

SAR Interferometry

Dr. Rudi Gens Alaska SAR Facility

Outline

- Relevant terms
- Geometry
- What does InSAR do?
- Why does InSAR work?
- Processing chain
 - Data sets
 - Coregistration
 - Interferogram generation
 - Phase unwrapping
 - Conversion from phase to height
 - Geocoding
- Applications

Relevant terms

- amplitude
 - measure of the strength of the signal
- phase
 - angle of a complex number

Relevant terms

- baseline
 - separation between the two antenna positions either mounted on an aircraft or realized by two repeating satellite orbits

Relevant terms

fringe

 represents the whole range of the phase in an interferogram from 0 to 2π in a full color cycle

What does InSAR do?

- extracting three-dimensional information out of a radar image pair covering the same area
 - digital elevation model
 - change detection

Why does InSAR work?

- coherent signal
 - single frequency and phase
- same geometry covering the same area from slightly different position in space

Data sets

- satellite data
 - ERS-1, ERS-2, RADARSAT-1, ENVISAT (C-band)
 - JERS-1 (L-band)
- airborne data
 - AirSAR, TOPSAR (research)
 - E-SAR, DOSAR, Star3i (commercial)
- shuttle
 - SIR-C / X-SAR mission (NASA + DLR)
 - Shuttle Radar Topography Mission (SRTM)

- alignment of master and slave image
- trade off between processing time and accuracy of technique applied
- coarse coregistration
 - matching images on a pixel level (shift in x and y)
- fine coregistration
 - sub-pixel alignment of images
 - large variety of techniques

Coregistration

- quality requirement to avoid phase errors
 - \rightarrow ¹/₈ of a pixel
- interpolation method
 - nearest neighbor, bilinear, cubic splines, sinc
- quality measure: coherence

Coherence image

measure for the correlation of corresponding signalsranges from 0 to 1

Interferogram generation

- complex multiplication of the two images
- corresponding amplitudes have to be averaged
- corresponding phases have to be differenced at each point in the image
 - \rightarrow phase difference related to height
- multilooking of interferogram

Interferogram

- looking for the correct integer number of phase cycles that needs to be added to each phase measurement to obtain the correct slant range distance
- absolute phase is wrapped into the interval $(-\pi,+\pi] \rightarrow$ ambiguity problem
- solving ambiguity referred to as phase unwrapping

Phase unwrapping

- no standard procedure to solve the phase unwrapping problem
- large variety of algorithms developed
- generally trade off between accuracy of solution and computational requirements
- two types of strategy to solve the phase unwrapping problem
 - path-following methods (local approach)
 - minimum-norm methods (global approach)

Phase unwrapping

- ways of simplifying the problem
 - filtering the phase before unwrapping
 - removing topographic phase before unwrapping \rightarrow requires reference DEM
 - choice of geometry: short baseline

- adding of topographic phase (in case removed before phase unwrapping)
- creation of the elevation map
- estimating an error map based on coherence image, baseline and unwrapped phase
- mapping from slant range to ground range geometry

Digital elevation model

Geocoding

- defines the transformation between local coordinate system and global Cartesian coordinates
- two different ways of implementation
 - Doppler frequency calculated on DEM positions and satellite orbit (requires reference DEM)
 - refinement of baseline and imaging geometry (no reference DEM required)

Digital elevation model

Interferometric techniques

- across-track interferometry
 - regular airborne geometry
- along-track interferometry
 - airborne geometry
 - monitoring ocean currents or other moving objects
- repeat-pass interferometry
 - usually spaceborne
- differential interferometry
 - change detection

Differential interferogram

- change detection: measurement of small-scale movements in the vertical direction
- displacement measured is not vertical, but along the viewing direction
- relative accuracy of the order of a few centimetres or even less vs. absolute accuracy of digital elevation models of about 10-15 meters (for ERS data)

Interferometric applications

mm

Seismic events

Source: Massonnet et al. (1993)

Volcanic hazards

Source: Massonnet (1997)

Glacier research

Image Credits: Received by CCRS Pre-processed by RSI

Interpretation: Laurence Gray, CCRS Karim Mattar, Intermap Paris Vachon, CCRS

© CSA, 1996

Land subsidence

Forestry

backscatter change

Questions

