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Importance of phase

® transmission or reception of coherent signals

® coherent processing
- synthetic aperture radar (SAR)
- synthetic aperture sonar
* seismic processing
- adaptive optics
- magnetic resonance imaging (MRI)
- aperture synthesis radio astronomy
- optical and microwave interferometry
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Relation to physical quantity

® In many applications the phase relates to a
physical quantity

- adaptive optics —» wavefront distortion

- MRI — degree of magnetic field inhomogeneity in
the water/fat separation problem

- astronomical imaging — relationship between the
object phase and its
bispectrum phase

- Interferometry — surface topography

U S
UNIVERSITY OF ALASKA w
FAIRBANKS




Optical and SAR interferometry

e Optical interferometry e SAR interferometry
coherent signal source: - coherent signal source:
laser synthetic aperture radar
application: - primary application:
holography digital elevation models

Focus on phase unwrapping in
SAR interferometry
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Why phase unwrapping?

e continuous phase information is sampled in a
discrete wrapped phase

¢ |ooking for the correct integer number of phase
cycles that needs to be added to each phase
measurement to obtain the correct slant range
distance

e absolute phase is wrapped into the interval
(-t,+7t] — ambiguity problem

¢ solving ambiguity referred to as phase

"AF unwrapping /zf (=
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Factors influencing the phase

e phase aliasing — Insufficient sampling rate

phase noise

thermal noise — sensor electronics

temporal change — different backscatter

baseline geometry — fringe density
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Influence of phase aliasing
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Influence of phase aliasing
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Influence of phase noise
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Influence of phase noise
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Influence of phase noise
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File Window Help
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Influence of phase noise
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Phase unwrapping terminology

e phase gradient

e phase discontinuity
® residue

e polarity

e charge

e pranch cut
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Phase gradients

A = -0.1 e small portion of
0.1- 0.2 0.3 wrapped phase
A, = -0.2 Ay = 0.4 madges
[ e values divided
-0.1 -=0.2 -0.4 by 2
A, = =0.1 e phase gradients
defined as phase
difference of
-0.2 -0.2 -0.3 adjacent pixels
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Inconsistencies and residues

Integrating

wrapped phase

gradients around

every 2x2 sample
path in the entire

Image

residue
(discontinuity)
If sum of phase
gradients

not zero
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Polarities and charges

0.1 0.2 0.3
® non-zero

0 - Integrals define
residues

e sign of the
residues define
polarity or

0.2 0.2 0.3 charge of a
' ' ' residue
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Branch cuts

e connection of residues with opposite polarity
are referred to as branch cuts

* prevent any integration path from crossing the
branch cuts

e residues and branch cuts are essential part of
path-following phase unwrapping methods
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ldeal phase unwrapping case

® no residues (discontinuities) in the images

® ntegration of the phase gradients over the
whole data set

® integration independent from integration path
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Phase unwrapping reality

e phase noise

e phase discontinuities resulting in residues

e high fringe rates in foreshortening and layover
regions — fringes cannot be separated

e shadow regions
— N0 phase unwrapping possible at all

® ntegration not independent from its integration
path
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Phase unwrapping reality

wy 3.10a: lab/unwrap_mask_ppm <unre - |EI|£|

e white:non-integrated
e black: grounding

e purple: branch cut

e red: neg. residue

® blue: pos. residue

e yellow: integrated
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Phase filtering

® nterferogram power spectra

- “white” component generated by thermal noise and
loss of coherence

- narrow band component related to fringes
e fringe rate determined by

- look angle
- along-track changes in the baseline
- any motion of the scene along the line of sight
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Phase filtering

e approach developed by Goldstein and Werner

e adaptive filtering sensitive to

- local phase noise
- fringe rate

e segmentation of interferogram into overlapping
rectangular patches
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Phase filtering

e estimation of the power spectrum

- computing by smoothing the intensity of the
two-dimensional FFT

e spatial resolution of the filter adapts to the local
phase variation

- regions of smooth phase are strongly filtered
- regions with high phase variance are weakly filtered
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Phase filtering

H(u,v)=|Z(u,v)

(2 w4 v
2 oo | 2
Z(uv)=exps—2» o O

* H(u,v): adaptive filter
* Z(u,v): power spectrum
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Unfiltered phase

Blowlp Window =10 x|
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Filtered phase

BlowUp Window
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Phase unwrapping algorithms

e no standard procedure to solve the phase
unwrapping problem

¢ |arge variety of algorithms developed

e generally trade off between accuracy of
solution and computational requirements

e two types of strategy to solve the phase
unwrapping problem
- path-following methods
"AF * minimum-norm methods
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Path-following methods

local approach

Goldstein's branch cut algorithm

Flynn's minimum discontinuity algorithm

minimum cost flow (MCF) networks

minimum spanning tree algorithm

L
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Goldstein s branch cut algorithm

e classical path-following method

e defines branch cuts between all detected
residues

e algorithm prevents any integration path from
crossing these cuts

e residues need to be balanced

- connection with a residue of opposite polarity
- connection with the image border
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i) Goldstein's branch cut algorithm

e approach minimizes the sum of the branch cut
length

e algorithm
- IS computationally very fast
- requires little memory

e |lack of weighting factors that could be used for
guiding the placement of branch cuts
— poor performance in areas of low
coherence
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Goldstein s branch cut algorithm

e algorithm tends to create isolated regions by
closed branch cuts
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Goldstein s branch cut algorithm

1o/ x]
e several
@ enhancements
o suggested
- removal of so-called
dipoles

phase filtering
reduces number of
residues

— higher fringe
visibility

— reduced phase
noise
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Flynn's minimum
discontinuity algorithm

¢ finds a solution that actually minimizes the
discontinuities

e high memory and computational requirements

e tree-growing approach

- traces paths of discontinuity in the phase
- detects paths that form loops

- minimizes the discontinuities by adding multiple of
27 to the phase values enclosed by the loops

UAF * works with or without weighting factors Z Y=,
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Minimum cost flow networks

e formulates the phase unwrapping problem as
global minimization problem with integer
variables

- uses the fact that phase differences of neighboring
pixels can be estimated with a potential error that is
an integer multiple of 2x

e optimization using MCF networks provides
position of branch cuts

e definition of costs assigned to flows within
network includes weighting factors in the

UAF process éj Y5
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Minimum cost flow networks

e relatively new approach

® uses general purpose software packages
- MCF networks widely available
- large field of research in itself

e designing MCF networks more adapted to the
specific constraints of phase unwrapping still a
major research issue
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—) Minimum spanning tree algorithm

e adaptation of Goldstein s algorithm
® approximates a minimum Steiner tree

e puilds a single tree containing all charges

- drawing branch cuts to next nearest charge to the
tree when charge of current tree becomes neutral

e definition of weights on phase gradients

- searching for the next charge to the tree with
Dijkstra's shortest path algorithm
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) Minimum spanning tree algorithm

e cuts are associated with the phase
differences

- guarantees that the tree does not close on itself
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Minimum-norm methods

e global approach

¢ |east-squares phase unwrapping

° minimum L,-norm phase unwrapping
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Least-squares
phase unwrapping

e solution of phase unwrapping by discretized
partial differential equations (PDES)

¢ |east-squares favorable for solution of PDEs
- solution leads to a linear equation

— Integrates the residues to minimize the gradient
differences

e works in weighted and unweighted form
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Least-squares
phase unwrapping

e unweighted least-square problem described as
discretized Poisson equation that can be
solved by

- Fast Fourier Transformations (FFTSs)
- discrete cosine transforms (DCTSs)
- unweighted multigrid method

¢ weighted least-squares approach requires
iterative methods
- Picard iteration method

"AF - preconditioned conjugate gradient (PCG) meth?ﬂf
o+ Weighted multigrid method
41
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Minimum Lp-norm
phase unwrapping

e generalization of weighted least-squares
approach

® requires solution of a non-linear PDE
Implemented In an iterative scheme

e double iterative structure makes algorithm
computationally very intensive

e generates data dependent weights (optional)
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Weighting factors

e important feature for a large number of
algorithms for their improved performance

- also referred to as quality maps
e define the quality of phase data on pixel level

® increasing interest with the introduction of
minimum cost flow networks

® various sources

e number of combinations countless
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Sources for weighting factors

e correlation coefficient (coherence)
- enhanced and re-scaled

® pseudo-correlation
- correlation with uniform magnitude

e phase derivative variance

- local sample variance of the partial derivatives of
the phase data

e maximum phase gradient
- magnitude of the largest phase gradient
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Sources for weighting factors

e residue density
e flatness of unwrapped phase

e smoothness of unwrapped phase
- sum of absolute values of the phase gradient

e statistically derived values

e masks used for excluding data from phase
unwrapping process
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Trends and challenges

e complexity of many approaches increases the
demand in memory and computational
efficiency

e improved hardware performance compensated
by size of data sets used

¢ results of shuttle radar topography mission
(SRTM) could improve phase unwrapping
results

e dealing with large volume data requires the

UAF iIndependence of human interaction Zj}fy
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