

Phase unwrapping

Rüdiger Gens

Outline

- Basics
- Factors influencing the phase
- Terminology
- Phase filtering
- Phase unwrapping algorithms
 - Path-following methods
 - Minimum-norm methods
- Weighting factors
- Trends and challenges

Importance of phase

- transmission or reception of <u>coherent</u> signals
- coherent processing
 - synthetic aperture radar (SAR)
 - synthetic aperture sonar
 - seismic processing
 - adaptive optics
 - magnetic resonance imaging (MRI)
 - aperture synthesis radio astronomy
 - optical and microwave interferometry

Relation to physical quantity

- in many applications the phase relates to a physical quantity
 - adaptive optics → wavefront distortion
 - $MRI \rightarrow$ degree of magnetic field inhomogeneity in ٠ the water/fat separation problem
 - astronomical imaging \rightarrow relationship between the object phase and its bispectrum phase
 - interferometry \rightarrow surface topography

Optical and SAR interferometry

- Optical interferometry
 - coherent signal source: • laser
 - application: ٠ holography

- SAR interferometry
 - coherent signal source: • synthetic aperture radar
 - primary application: • digital elevation models

Focus on phase unwrapping in SAR interferometry

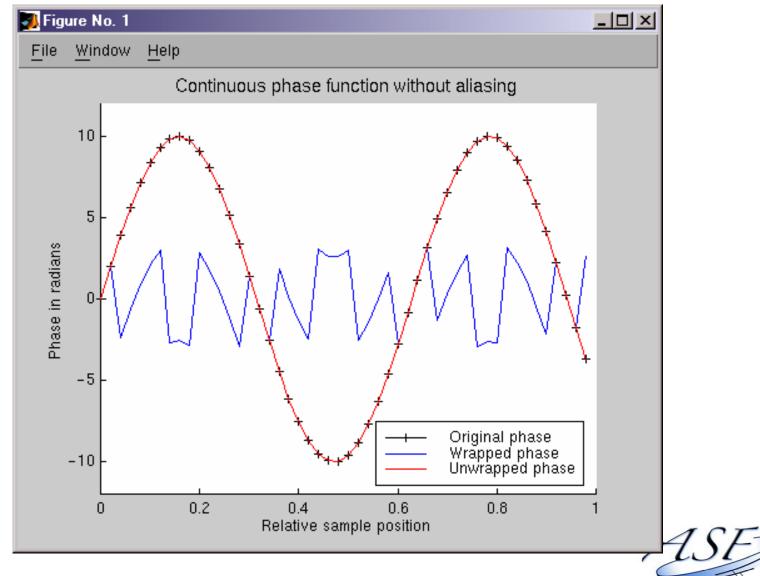
Why phase unwrapping?

- continuous phase information is sampled in a discrete wrapped phase
- looking for the correct integer number of phase cycles that needs to be added to each phase measurement to obtain the correct slant range distance
- absolute phase is wrapped into the interval (-π,+π] → ambiguity problem

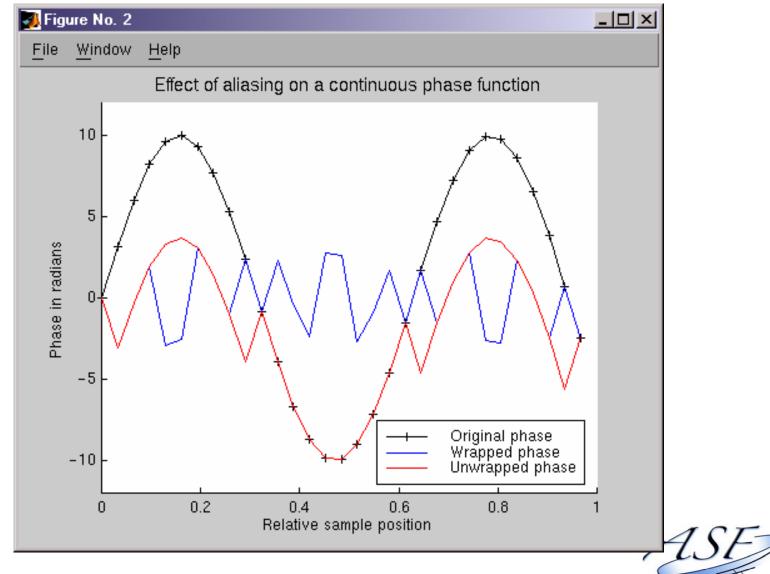
 solving ambiguity referred to as phase unwrapping

GEOS 639 - InSAR and its applications (Fall 2006)

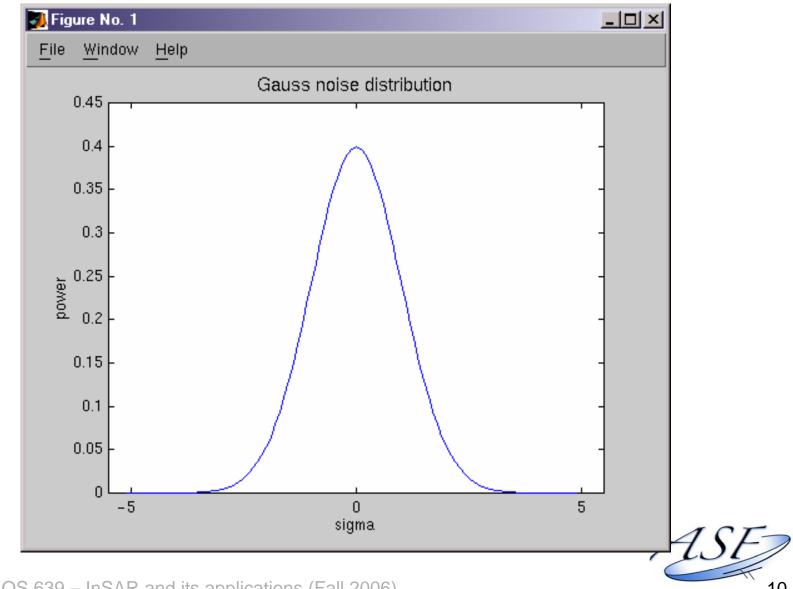
Factors influencing the phase


- phase aliasing \rightarrow insufficient sampling rate
- phase noise
- thermal noise \rightarrow sensor electronics
- temporal change \rightarrow different backscatter
- baseline geometry \rightarrow fringe density

Influence of phase aliasing

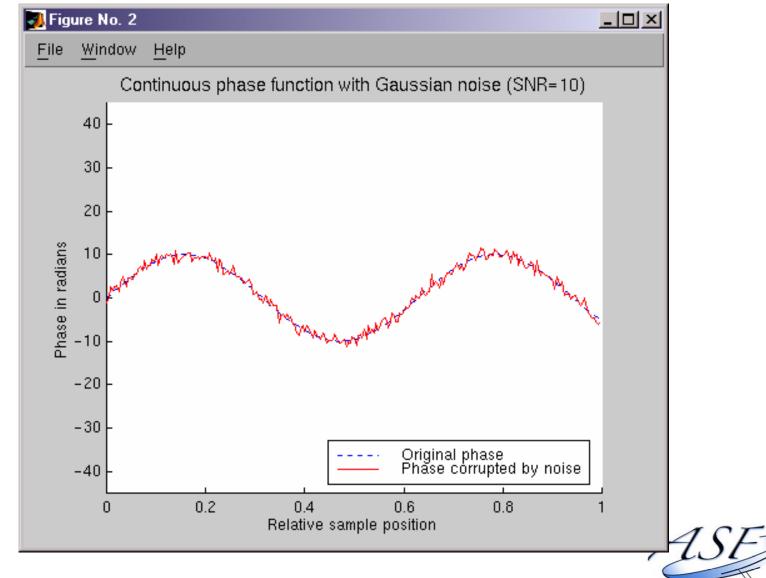

GEOS 639 - InSAR and its applications (Fall 2006)

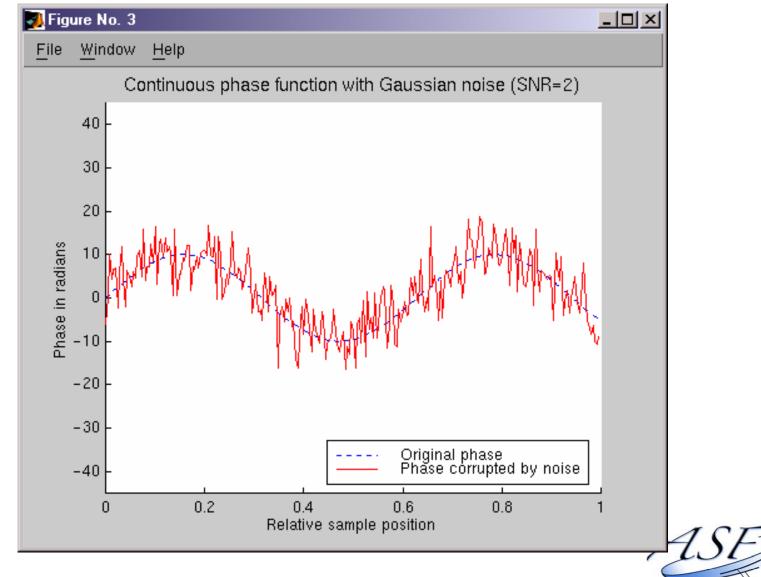
UNIVERSITY OF ALASKA


Influence of phase aliasing

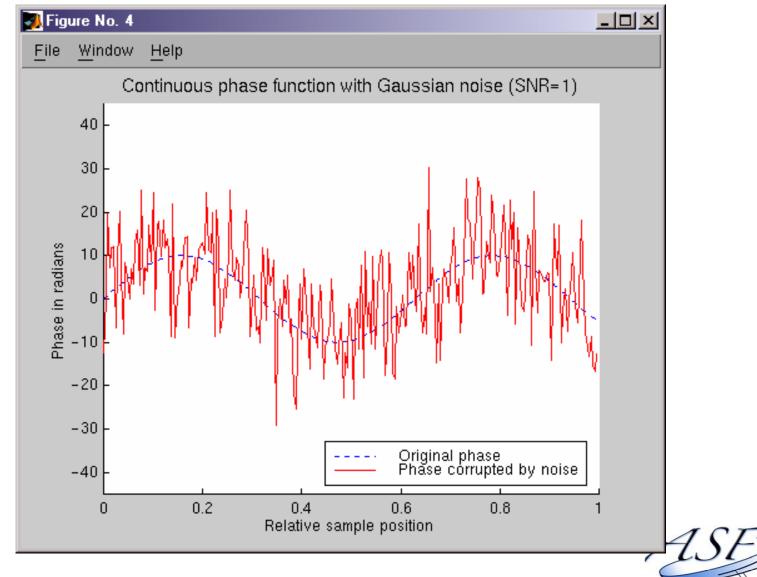
GEOS 639 - InSAR and its applications (Fall 2006)

UNIVERSITY OF ALASKA



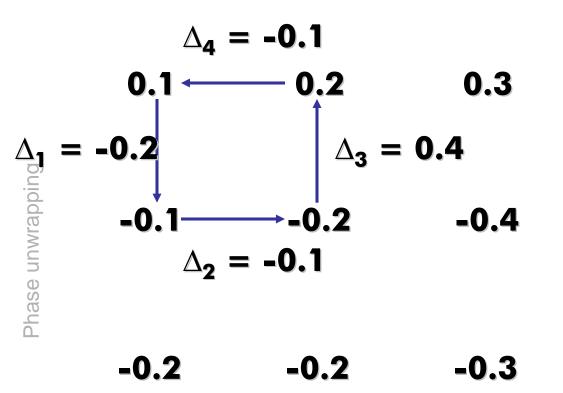


Phase unwrapping



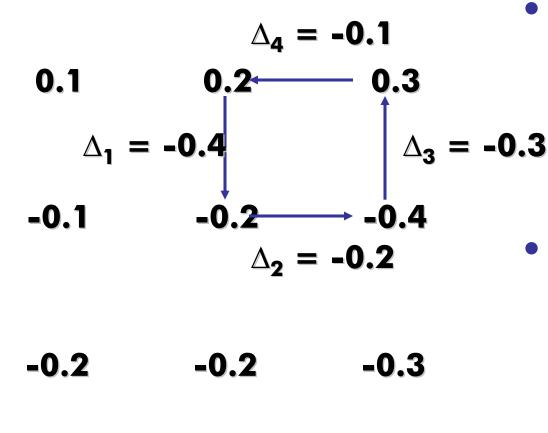
GEOS 639 - InSAR and its applications (Fall 2006)

Phase unwrapping terminology


- phase gradient
- phase discontinuity
- residue
- polarity
- charge
- branch cut

Phase gradients

- small portion of wrapped phase image
- values divided by 2π
- phase gradients defined as phase difference of adjacent pixels



$$q = \sum_{i=1}^{4} \Delta_i = \mathbf{0}$$

GEOS 639 – InSAR and its applications (Fall 2006)

Inconsistencies and residues

- integrating wrapped phase gradients around every 2x2 sample path in the entire image
- residue (discontinuity) if sum of phase gradients not zero

 $q = \sum_{i=1} \Delta_i =$

GEOS 639 – InSAR and its applications (Fall 2006)

Polarities and charges

0.1	0.2		0.3	
				non-zero
0		-		integrals define
				residues
-0.1	-0.2		-0.4	 sign of the
0		0		residues define
0		0		polarity or
-0.2	-0.2		-0.3	charge of a
				residue

Phase unwrapping

GEOS 639 – InSAR and its applications (Fall 2006)

Branch cuts

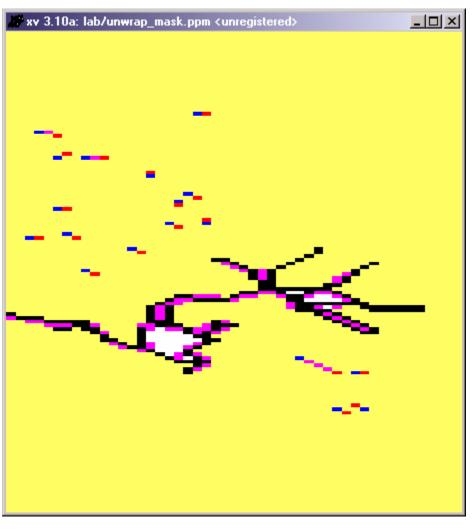
- connection of residues with opposite polarity are referred to as branch cuts
- prevent any integration path from crossing the branch cuts
- residues and branch cuts are essential part of path-following phase unwrapping methods

Ideal phase unwrapping case

- no residues (discontinuities) in the images
- integration of the phase gradients over the whole data set
- integration independent from integration path

Phase unwrapping reality

- phase noise
- phase discontinuities resulting in residues
- high fringe rates in foreshortening and layover regions → fringes cannot be separated
- shadow regions
 - \rightarrow no phase unwrapping possible at all
- integration <u>not independent</u> from its integration path



Phase unwrapping reality

Phase unwrapping

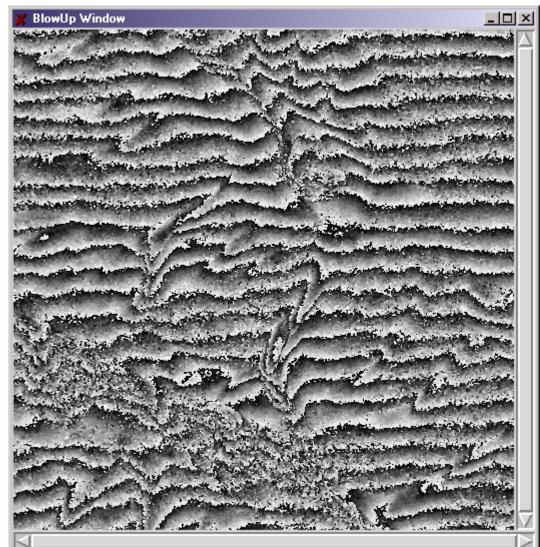
- white:non-integrated
- black: grounding
- purple: branch cut
- red: neg. residue
- blue: pos. residue
- yellow: integrated

- interferogram power spectra
 - "white" component generated by thermal noise and loss of coherence
 - narrow band component related to fringes
- fringe rate determined by
 - look angle
 - along-track changes in the baseline
 - any motion of the scene along the line of sight

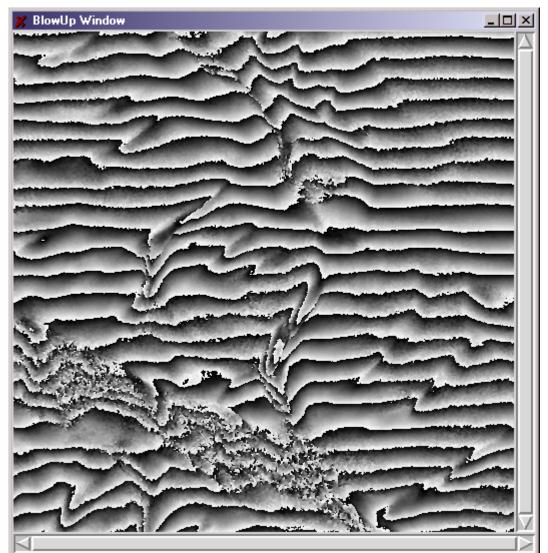
- approach developed by Goldstein and Werner
- adaptive filtering sensitive to
 - local phase noise
 - fringe rate
- segmentation of interferogram into overlapping rectangular patches

- estimation of the power spectrum
 - computing by smoothing the intensity of the two-dimensional FFT
- spatial resolution of the filter adapts to the local phase variation
 - regions of smooth phase are strongly filtered
 - regions with high phase variance are weakly filtered

$$H(u,v) = |Z(u,v)|^{\alpha}$$
$$Z(u,v) = \exp\left\{-\frac{\frac{u^2}{\sigma_u^2} - \frac{2uv}{\sigma_u \sigma_v} + \frac{v^2}{\sigma_v^2}}{2(1-\rho^2)}\right\}$$


- H(u,v): adaptive filter
 Z(u,v): power spectrum
- Z(u,v): power spectrum

Unfiltered phase



GEOS 639 - InSAR and its applications (Fall 2006)

Filtered phase

GEOS 639 - InSAR and its applications (Fall 2006)

Phase unwrapping algorithms

- no standard procedure to solve the phase unwrapping problem
- large variety of algorithms developed
- generally trade off between accuracy of solution and computational requirements
- two types of strategy to solve the phase unwrapping problem
 - path-following methods
 - minimum-norm methods

Path-following methods

- local approach
- Goldstein`s branch cut algorithm
- Flynn`s minimum discontinuity algorithm
- minimum cost flow (MCF) networks
- minimum spanning tree algorithm

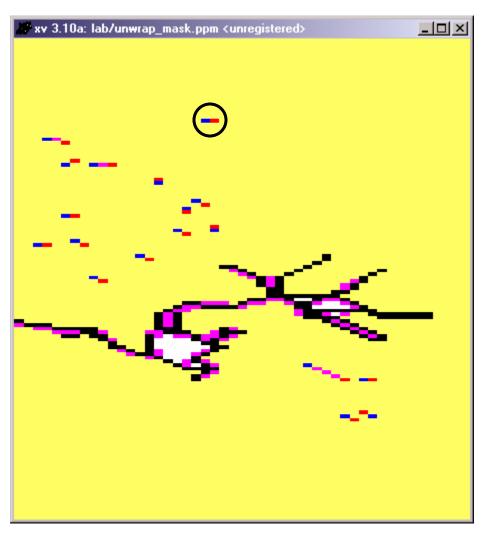
Goldstein`s branch cut algorithm

- classical path-following method
- defines branch cuts between all detected residues
- algorithm prevents any integration path from crossing these cuts
- residues need to be balanced
 - connection with a residue of opposite polarity
 - connection with the image border

Goldstein`s branch cut algorithm

- approach minimizes the sum of the branch cut length
- algorithm
 - is computationally very fast
 - requires little memory
- lack of weighting factors that could be used for guiding the placement of branch cuts
 → poor performance in areas of low coherence

 algorithm tends to create isolated regions by closed branch cuts



Goldstein`s branch cut algorithm

UNIVERSITY OF ALASKA

- several enhancements suggested
 - removal of so-called dipoles
 - phase filtering reduces number of residues
 - → higher fringe visibility
 - → reduced phase noise

Flynn`s minimum discontinuity algorithm

- finds a solution that actually minimizes the discontinuities
- high memory and computational requirements
- tree-growing approach
 - traces paths of discontinuity in the phase
 - detects paths that form loops •
 - minimizes the discontinuities by adding multiple of • 2π to the phase values enclosed by the loops

works with or without weighting factors

GEOS 639 - InSAR and its applications (Fall 2006)

Minimum cost flow networks

- formulates the phase unwrapping problem as global minimization problem with integer variables
 - uses the fact that phase differences of neighboring • pixels can be estimated with a potential error that is an integer multiple of 2π
- optimization using MCF networks provides position of branch cuts
- definition of costs assigned to flows within network includes weighting factors in the process

GEOS 639 - InSAR and its applications (Fall 2006)

Minimum cost flow networks

- relatively new approach
- uses general purpose software packages
 - MCF networks widely available
 - large field of research in itself
- designing MCF networks more adapted to the specific constraints of phase unwrapping still a major research issue

Minimum spanning tree algorithm

- adaptation of Goldstein`s algorithm
- approximates a minimum Steiner tree
- builds a single tree containing all charges
 - drawing branch cuts to next nearest charge to the tree when charge of current tree becomes neutral
- definition of weights on phase gradients
 - searching for the next charge to the tree with Dijkstra`s shortest path algorithm

- cuts are associated with the phase differences
 - guarantees that the tree does not close on itself

Minimum-norm methods

- global approach
- least-squares phase unwrapping
- minimum L_p-norm phase unwrapping

Least-squares phase unwrapping

- solution of phase unwrapping by discretized partial differential equations (PDEs)
- least-squares favorable for solution of PDEs
 - solution leads to a linear equation
 - $\rightarrow\,$ integrates the residues to minimize the gradient differences
- works in weighted and unweighted form

Least-squares phase unwrapping

- unweighted least-square problem described as discretized Poisson equation that can be solved by
 - Fast Fourier Transformations (FFTs)
 - discrete cosine transforms (DCTs)
 - unweighted multigrid method
- weighted least-squares approach requires iterative methods
 - Picard iteration method
 - preconditioned conjugate gradient (PCG) method

• weighted multigrid method GEOS 639 – InSAR and its applications (Fall 2006)

Minimum L_p-norm phase unwrapping

- generalization of weighted least-squares approach
- requires solution of a non-linear PDE implemented in an iterative scheme
- double iterative structure makes algorithm computationally very intensive
- generates data dependent weights (optional)

Weighting factors

- important feature for a large number of algorithms for their improved performance
 - also referred to as quality maps
- define the quality of phase data on pixel level
- increasing interest with the introduction of minimum cost flow networks
- various sources
- number of combinations countless

Sources for weighting factors

- correlation coefficient (coherence)
 - enhanced and re-scaled
- pseudo-correlation
 - correlation with uniform magnitude
- phase derivative variance
 - local sample variance of the partial derivatives of the phase data
- maximum phase gradient
 - magnitude of the largest phase gradient

^{ohase} unwrapping

Sources for weighting factors

- residue density
- flatness of unwrapped phase
- smoothness of unwrapped phase
 - sum of absolute values of the phase gradient
- statistically derived values
- masks used for excluding data from phase unwrapping process

Trends and challenges

- complexity of many approaches increases the demand in memory and computational efficiency
- improved hardware performance compensated by size of data sets used
- results of shuttle radar topography mission (SRTM) could improve phase unwrapping results
- dealing with large volume data requires the

independence of human interaction

GEOS 639 - InSAR and its applications (Fall 2006)