Map projections

Rüdiger Gens

Coordinate systems

Geographic coordinates

Sphere versus spheroid

Sphere

Spheroid (Ellipsoid)

Source: ArcGIS help file

- assumption that the earth is a sphere is possible for small-scale maps (smaller than 1:5000000)
- to maintain accuracy for larger-scale maps (scales of 1: 1000000 or larger) a spheroid is necessary

Common Spheroids

- Bessel 1841
- Clarke 1866, Clarke 1880
- GEM 6, GEM 10C
- GRS 1967, GRS 1980
- International 1924, International 1967
- WGS 72, WGS 84

Reference surfaces

- three reference surfaces
- topography
- geoid
- ellipsoid

Reference surfaces

- topography represents the physical surface of the Earth

Reference surfaces

- geoid defined as level surface of gravity field with best fit to mean sea level
- maximum difference between geoid and mean sea level about 1 m

Reference surfaces

- ellipsoid defines mathematical surface approximating the physical reality while simplifying the geometry

Datum

- describes the relationship between a particular local ellipsoid and a global geodetic reference system (e.g. WGS84)
- local datum defines the best fit to the Earth's surface for particular area (e.g. NAD27)

Common Datums

- World Geodetic System 1972 (WGS 72)
- World Geodetic System 1984 (WGS 84)
- North American Datum 1927 (NAD 27)
- North American Datum 1983 (NAD 83)
- European Datum 1950 (ED 50)
- South American Datum 1969 (SAD 69)

Datum

- datum
- describes the relationship between a particular local ellipsoid and a global geodetic reference system
- coordinate system
- shape and size given by the ellipsoid
- position given by the fixing of the origin
- fixing of the origin defines a datum

Geographic coordinate system

- A point is referenced by its longitude and latitude values
- Longitude and latitude are angles measured from the earth's center to a point on the earth's surface

Parallels (Lines of latitude)

Meridians (Lines of longitude)

Graticular Network

Coordinate systems

Cartesian coordinates

- geodetic coordinates inappropriate for satellite imagery
\rightarrow cartesian coordinates

Map projections

- problem of mapping three-dimensional coordinates related to a particular datum on a flat surface
- maps are two-dimensional
- impossible to convert spheroid into flat plane without distortions of shape, area, distance, or direction \rightarrow map projections

Cylindrical projections

- cylinder that has its entire circumference tangent to the Earth's surface along a great circle (e.g. equator)

Cylindrical projections

- The map projection has distorted the graticule (data near the poles is stretched)

So..

- Where would you use a cylindrical projection?
- And why?

Cylindrical: Examples

- Mercator projection
- Transverse Mercator projection
- Oblique Mercator projection

Conic projections

- Simplest conic projection is tangent to the surface along a small circle (called standard parallel)
- The meridians are projected onto the conical surface, meeting at the apex
- Parallel lines of latitude are projected onto the cone as rings.

Conic projections

- further you get from the standard parallel, the more distortion increases.

Conic projections

- secant projection: a more complex conic projection
- contact the global surface at two locations
- defined by two standard parallels
- less overall distortion than a tangent projection

So..

- Where would you use a conic projection?
- And why?

Conic: Examples

- Conic projection with two standard parallels
- Lambert Conformal Conic projection (preserves angles)
- Albers Conic Equal-Area projection (preserves areas)

Azimuthal (Planar) projections

- projecting positions directly to a plane tangent to the Earth's surface

Azimuthal (Planar) projections

- Point of contact specifies the aspect and is the focus of the projection.
- The focus is identified by a central longitude and a central latitude.
- Possible aspects are polar, equatorial, and oblique

So..

- Where would you use a azimuthal projection?
- And why?

Azimuthal (Planar) projections

- Lambert Azimuthal Equal-Area projection
- Stereographic (conformal) projection

Equidistant projections

Sphere

Projection

- scale factor along a meridian (line of equal longitude) is equal to 1
- shape and area of square are distorted

Equal-area projections

Sphere

Projection

- equal areas are represented by the same map area regardless of where they occur

Conformal projections

- angles on a conformal map are the same as measured on the Earth's surface
- meridians intersect parallels at right angles

Summary

- map purpose
- for distribution maps: equal area
- for navigation: projections that show azimuths or angles properly
- size of area
- some projections are better suited for East-West extent, others for North-South
- for small areas the projection is relatively unimportant
- for large areas the projection is very important

