

Limiting factors of SAR interferometry

Rüdiger Gens

Causes of decorrelation

 $\gamma = \gamma_{baseline} \gamma_{SNR} \gamma_{Doppler} \gamma_{volume} \gamma_{temporal} \gamma_{atmosphere}$ $\gamma = (1 - \delta)$

$$\gamma = coherence$$

$$\delta = decorrelation$$

- baseline decorrelation
- thermal noise
- non-overlapping Doppler spectral energy

GEOS 639 - InSAR and its applications (Fall 2006)

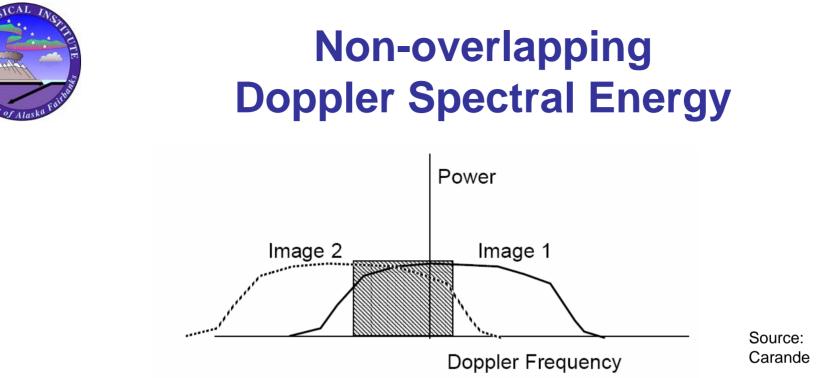
Causes of decorrelation

 $\gamma = \gamma_{baseline} \gamma_{SNR} \gamma_{Doppler} \gamma_{volume} \gamma_{temporal} \gamma_{atmosphere}$ $\gamma = (1 - \delta)$

$$\gamma = coherence$$

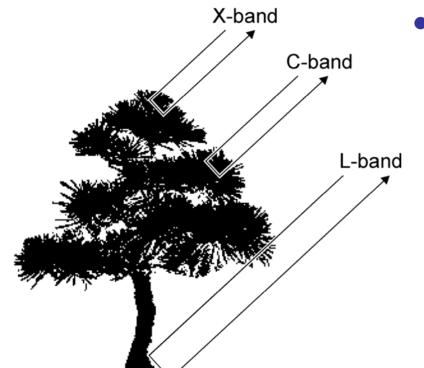
$$\delta = decorrelation$$

- volume scattering
- temporal changes
- atmospheric phenomenon



Geometrical decorrelation

- occurs as the separation between the two orbital trajectories (baseline) increases
- correlation coefficient is inversely proportional to the perpendicular baseline component


- Doppler spectral width determined by azimuth beam width of SAR
- Doppler center frequency determined by attitude, antenna and earth rotation
- for max coherence, filter out non-overlapping energy

Volume scattering

scattering from different (random) heights within each resolution cell, such as in volume scattering, produces decorrelation

Limiting factors of InSAR

GEOS 639 – InSAR and its applications (Fall 2006)

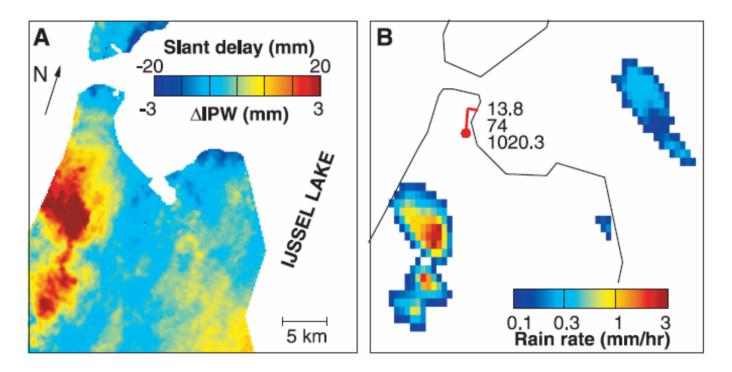
Temporal decorrelation

- change of scattering within a resolution cell or their electrical properties
 - function of time between the first and the second data acquisition
 - caused by vegetation, wind effects, soil moisture, snow fall, farming activities etc.

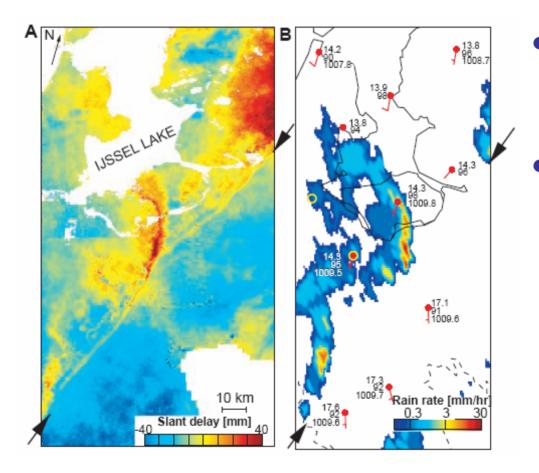
Atmospheric perturbation

- ionospheric path delay
 - variations in the total electron content along the path (depends on the time of day and influences the whole scene homogeneously)
 - traveling ionospheric disturbances (cause localized artifacts)
- tropospheric path delay
 - dominant dry part
 - small but highly variable wet part which is caused by the strong temporal and spatial variability of the water vapor concentration

Tropospheric water vapor


- probably most limiting factor for differential SAR interferometry
- very localized, heterogeneous effect
 - can cause misinterpretation of deformation fields derived by InSAR in the order of centimeters

Example: the Netherlands Effect of precipitation


- A: slant delay variation, mapped to zenith-integrated precipitable water differences
- B: weather radar rain rate; surface wind velocity was 4.1 m/s

Hanssen, R.F., Weckwerth, T.M., Zebker, H.A. and Klees, R., 1999. High-resolution water vapor mapping from interferometric radar measurements. Science, 283(5406): 1297-1299

Example: the Netherlands Effect of a cold front

- A: cold front is visible as the line between the arrows
 - B: weather radar image
 - two weather radar stations are indicated by the yellow circles
 - superposed are surface observations

Hanssen, R.F., Weckwerth, T.M., Zebker, H.A. and Klees, R., 1999. High-resolution water vapor mapping from interferometric radar measurements. *Science*, **283**(5406): 1297-1299

Limiting factors of InSAR

Orbit errors

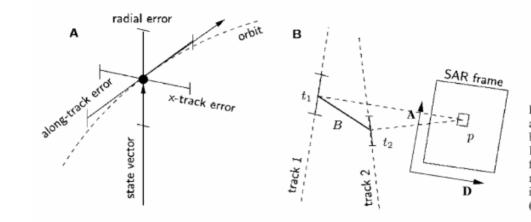


Fig. 3. A Three-dimensional sketch of the along-track, across-track and radial error bars. B Top view of two converging tracks. Resolution element p is observed at $(t = t_1)$ from the first track 1, and at $(t = t_2)$ from the repeat track 2. The along-track error is indicated by the error bars along the track, (from Hanssen 2001)

- orbital error vector is usually expressed in the coordinate system rotating with the satellite and consists of three components
 - along-track
 - across-track
 - radial

Orbit errors: Filtering approach

- orbital filtering approach can significantly improve precise orbit estimates of short arcs of ERS trajectories in an absolute sense
- approach restricted to those orbital passes in which SAR data were acquired
- limited to determining the across-track and radial components of the orbital trajectory
 - could use timing errors to estimate the along-track error

Kohlhase, A.O., Feigl, K.L. and Massonnet, D., 2003. Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories. *Journal Of Geodesy*, **77**(9): 493-502
GEOS 639 – InSAR and its applications (Fall 2006)

Orbit errors: Filtering approach

 solving the weighted least-squares orbit determination problem

$$\mathbf{x}^{lsq} = (\mathbf{A}^{T} \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^{T} \mathbf{W} \mathbf{d}$$
$$\delta \mathbf{r}_{i}^{lsq} = \mathbf{r}_{i}^{lsq} - \mathbf{r}_{i}^{prior}, \quad \delta \mathbf{r}_{i}^{lsq} \subseteq \mathbf{x}^{lsq}$$
$$n_{12} = (\mathbf{r}_{2}^{lsq} - \mathbf{r}_{1}^{lsq}) - (\mathbf{r}_{2}^{prior} - \mathbf{r}_{1}^{prior})$$
$$= \mathbf{B}^{lsq} - \mathbf{B}^{prior} \approx \Delta(\delta \mathbf{r}_{12})$$

Kohlhase, A.O., Feigl, K.L. and Massonnet, D., 2003. Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories. *Journal Of Geodesy*, **77**(9): 493-502
GEOS 639 – InSAR and its applications (Fall 2006)

ASE