ips configuration file

[General]

The interferometric processing system 'ips' can be run in two
different modes. The main mode is DEM for the generation of digital elevation
models. The DINSAR mode for differential interferometry is still under
development.

mode = DEM

This parameter looks for the location of the reference DEM file# The reference DEM is used in various parts of the SAR interferometric# processing flow, mostly prominently for the phase unwrapping.

reference dem = /export/apd/rgens/ips/dem/alaska_fixed.img

The ips saves a large number of intermediate and final results.# All the files relevant for further analysis will start with this basename

base name = delta

The ips handles three different data types. The most flexible type# is the level zero Sky Telemetry Format (STF). This swath data type allows for# variable area sizes that are processed. The second data type is RAW for CEOS# level zero data. The third supported data type is single look complex data(SLC)

data type = STF

The deskew flag indicates whether the raw data is SAR processed in # in zero Doppler geometry or not (1 for deskewing, 0 for regular processing)

deskew = 0

For the SAR processing, two different schemes for chosing the# Doppler values have been considered. Currently only the processing to the# 'average' Doppler values of the image pair is used. The alternative approach# that uses 'updated' Doppler values has not been implemented.

doppler = average

For effectively using swath data the user can define latitude# constraints to select a subset of the swath data (-99 indicates that no# latitude constraint is chosen).

lat begin = 63.650lat end = 64.250

Matching up the first and last patches of an image pair leads to # the best results. For this approach use the 'PATCH' option. Once this method # fails you can use the 'FRAME' option to match up master and slave image in # its entirety.

coregistration = PATCH

This parameter defines the maximum allowed pixel offset in range

or azimuth after the initial co-registration has been performed. Three pixels # is an empirical value that worked in most cases.

maximum offset = 3

The default values file is used to define the user's preferred
parameter settings. In most cases, you will work on a study where your area
of interest is geographically well defined. You want the data for the entire
project in the same projection, with the same pixel spacing and the same
output format.
A sample of a default values file can be located in
/export/home/rgens/svnbuild/asf_tools//share/asf_tools/ips.

default values =

The test mode is for internal use only (1 for test mode on, 0 for # test mode off).

test mode = 0

The short configuration file flag allows the experienced user to# generate configuration files without the verbose comments that explain all# entries for the parameters in the configuration file (1 for a configuration# without comments, 0 for a configuration file with verbose comments)

short configuration file = 0

The general status field indicates the progress of the processing.
The status 'new' indicates that the configuration has only been initialized
but not run yet. For each new run the status needs to be set back to 'new'
before running a data set again. Once the processing starts the status changes
to 'processing'. When the processing is complete it is changed to 'success'

status = new

[Master image]

This parameter gives the path of the master image data.

path = /export/apd/rgens/ips/stf

This parameter gives the name of the master data file.# Swath data has usually an extension .000, whereas CEOS data has an extension# .D

data file = e1_23592.000

This parameter gives the name of the master metadata file.

Swath data has usually an extension .par, whereas CEOS data has an extension # .D

metadata file = e1_23592.000.par

[Slave image]

This parameter gives the path of the slave image data.

path = /export/apd/rgens/ips/stf

This parameter gives the name of the slave data file.

Swath data has usually an extension .000, whereas CEOS data has an extension # .D

data file = e2_3919.000

This parameter gives the name of the slave metadata file.

Swath data has usually an extension .par, whereas CEOS data has an extension # .D

metadata file = e2_3919.000.par

[Ingest]

This parameter defines the location of the precision state# vectors provided by the German Aerospace Center (DLR) for the master image

precise master =

This parameter defines the location of the precision state# vectors provided by the German Aerospace Center (DLR) for the slave image

precise slave =

This flag defines whether precision state vectors should be used# or not (1 for using precision state vectors, 0 for not using precision# state vectors). This functionality is not fully implemented yet.

precise orbits = 0

The status field indicates the progress of the processing.

The status 'new' indicates that this processing step has not been

performed. When the processing is complete it is changed to 'success'

The processing flow can be interrupted by setting the status to 'stop'

status = new

[Doppler]

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

[Coregister first patch]

This parameter defines the number of patches that are used# during the co-registration of the upper part of the images. Ideally the# images correlate with one patch. At times, two patches might be required

patches = 1

This parameter indicates at which line number the processing# of the first patch of the master image is started. This can be changed# when the initial co-registration does not succeed.

start master = 0

This parameter indicates at which line number the processing# of the first patch of the slave image is started. This can be changed# when the initial co-registration does not succeed.

start slave = 0

This parameter determines the number of pixels that define the # grid that is used for the FFT match

grid = 20

This parameters defines whether a complex FFT is used for the# fine co-registration instead of the coherence (1 for complex FFT match,# 0 for FFT match using coherence). Complex FFT matches usually lead to# better matching results.

fft = 1

This parameter indicates the pixel offset in azimuth direction # the matching algorithm determined.

offset azimuth = 0

This parameter indicates the pixel offset in range direction # the matching algorithm determined.

offset range = 0

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

[Coregister last patch]

This parameter defines the number of patches that are used# during the co-registration of the lower part of the images. Ideally the# images correlate with one patch. At times, two patches might be required

patches = 1

This parameter indicates at which line number the processing# of the last patch of the master image is started. This can be changed# when the initial co-registration does not succeed.

start master = 0

This parameter indicates at which line number the processing# of the last patch of the slave image is started. This can be changed# when the initial co-registration does not succeed.

start slave = 0

This parameter determines the number of pixels that define the # grid that is used for the FFT match

grid = 20

This parameters defines whether a complex FFT is used for the# fine co-registration instead of the coherence (1 for complex FFT match,# 0 for FFT match using coherence). Complex FFT matches usually lead to# better matching results.

fft = 1

This parameter indicates the pixel offset in azimuth direction # the matching algorithm determined.

offset azimuth = 0

This parameter indicates the pixel offset in range direction # the matching algorithm determined.

offset range = 0

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[ardop - Master image]

This parameter indicates the start offset determined by the # the first patch co-registration for the master image. start offset = 0

This parameter indicates the end offset determined by the # the last patch co-registration for the master image.

end offset = 0

This parameter indicates how many patches of data have been # for the master image.

patches = 1

This flag defines whether a power image is created while# processing the master image (1 for generating a power image, 0 for not# generating a power image).

power flag = 1

This parameter defines the file name of the master power image.

power image = delta_a_pwr.img

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[ardop - Slave image]

This parameter indicates the start offset determined by the # the first patch co-registration for the slave image.

start offset = 0

This parameter indicates the end offset determined by the # the last patch co-registration for the slave image.

end offset = 0

This parameter indicates how many patches of data have been # for the slave image.

patches = 1

This flag defines whether a power image is created while# processing the slave image (1 for generating a power image, 0 for not# generating a power image.

power flag = 1

This parameter defines the file name of the slave power image.

power image = delta_b_pwr.img

The status field indicates the progress of the processing.# The status 'new' indicates that this processing step has not been# performed. When the processing is complete it is changed to 'success'# The processing flow can be interrupted by setting the status to 'stop'

status = new

[Interferogram/coherence]

This parameter defines the file name of the interferogram

interferogram = delta_igram

This parameter defines the file name of the coherence image

coherence image = coh.img

The minimum coherence level defines the threshold for the# interferometric processing flow to interrupt the processing. In case the# average of an image pair is below this threshold the ips automatically# aborts any further processing. This way the low average coherence is used# as an indicator for co-registration problems.

minimum coherence = 0.3

This indicates whether a multilooked version of the interferogram# is stored (1 for generating a multilooked interferogram, 0 for not generating# one).

multilook = 1

The status field indicates the progress of the processing.

The status 'new' indicates that this processing step has not been

performed. When the processing is complete it is changed to 'success'

The processing flow can be interrupted by setting the status to 'stop'

status = new

[Offset matching]

Maximum pixel offset allowed during matching with reference # DEM.

max = 1.0

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

[Simulated phase]

Name of the file containing seed points used in the phase# unwrapping process. Seed points are selected on a regular grid and represent# points with minimum slope.

seeds = delta.seeds

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[Deramp/multilook]

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[Phase unwrapping]

Name of the phase unwrapping algorithm used.

Currently two phase unwrapping algorithms are supported. 'escher' is an

implementation of Goldstein's branch cut algorithm. 'snaphu' has been

developed and is distributed by Stanford University. It uses a minimum # cost flow network.

algorithm = escher

This parameters defines whether a topographic phase based on# an ellipsoidal approximation is subtracted from the phase before the# phase unwrapping

flattening = 1

This parameter sets the number of processors used for the # phase unwrapping (only valid for using 'snaphu').

processors = 8

This parameter defines the number of tiles in azimuth direction # used by the 'snaphu' phase unwrapping algorithm.

tiles azimuth = 0

This parameter defines the number of tiles in range direction# used by the 'snaphu' phase unwrapping algorithm.

tiles range = 0

Alternatively, the number of tiles used by 'snaphu' in azimuth # direction can defined per degree.

tiles per degree = 0

This parameter defines the overlap between tiles in azimuth # direction (only valid for using 'snaphu').

overlap azimuth = 400

This parameter defines the overlap between tiles in range # direction (only valid for using 'snaphu').

overlap range = 400

This parameter defines the weighting factor used for the # phase filtering (default value: 1.6).

filter = 1.6

Name of the quality control file generated when using the # snaphu phase unwrapping algorithm.

quality control = delta_qc.phase

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[Baseline refinement]

Number of iterations used in the baseline refinement.

iterations = 0 This parameter defines the maxiumum number of iterations allowed # for the iterative determination of the interferometric baseline.

max iterations = 15

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[Elevation]

File name of the elevation model in slant range.

dem = delta_ht.img

File name of the error map generated in slant range.

error map = delta_err_ht.img

The status field indicates the progress of the processing.# The status 'new' indicates that this processing step has not been# performed. When the processing is complete it is changed to 'success'# The processing flow can be interrupted by setting the status to 'stop'

status = new

[Ground range DEM]

The status field indicates the progress of the processing.# The status 'new' indicates that this processing step has not been# performed. When the processing is complete it is changed to 'success'# The processing flow can be interrupted by setting the status to 'stop'

status = new

[Geocoding]

File name of the geocoded digital elevation model.

dem = delta_dem

File name of the geocoded error map.

error map = delta_error

File name of the geocoded amplitude image.

amplitude = delta_amp

File name of the geocoded coherence image.

coherence = delta_coh

Name of the projection used for the geocoding.# There are currently five projections supported: UTM, Polar Stereographic,# Albers Conic Equal-Area, Lambert Conformal Conic and Lambert Azimuthal# Equal-Area projection.

projection name = utm

Name of the projection parameter file.

projection file = /export/home/rgens/svnbuild/asf_tools//share/asf_tools/projections/utm/utm.proj

Resampling method used for the geocoding of data.

Currently three resampling method are supported: nearest neighbor,

bilinear (default) and bicuc.

resampling method = bilinear

This parameter defines the pixel spacing for the geocoded # products.

pixel spacing = 20.0

The status field indicates the progress of the processing.
The status 'new' indicates that this processing step has not been
performed. When the processing is complete it is changed to 'success'
The processing flow can be interrupted by setting the status to 'stop'

status = new

[Export]

The name of the format all geocoded results are exported to.# For using the geocoded results in any commerical image processing and GIS# the 'geotiff' is the most reliable. For simple visualization 'jpeg' or# 'tiff' do just fine.

format = geotiff

The status field indicates the progress of the processing.

The status 'new' indicates that this processing step has not been

performed. When the processing is complete it is changed to 'success'

The processing flow can be interrupted by setting the status to 'stop'