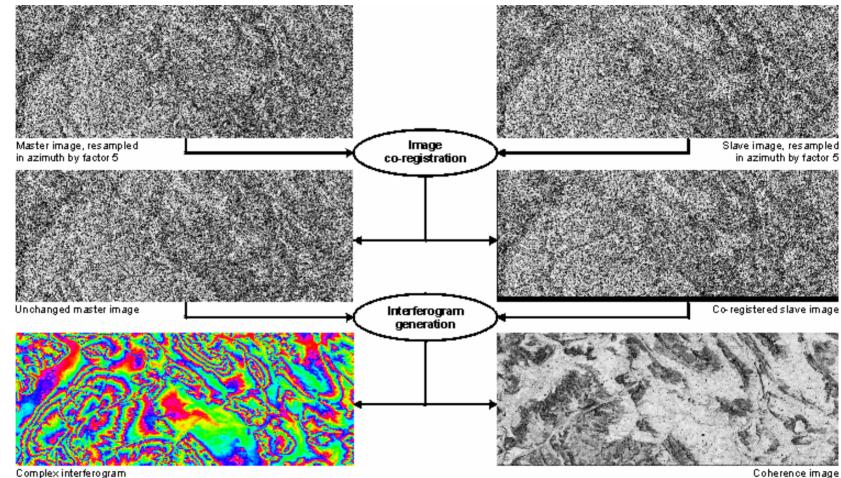


Interferometric processing

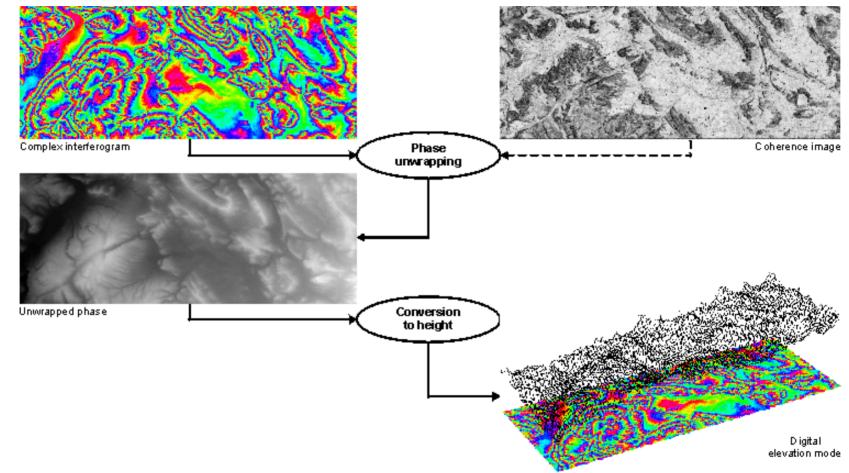
Rüdiger Gens

Why InSAR processing?


- extracting three-dimensional information out of a radar image pair covering the same area
 - digital elevation model
 - change detection

Interferometric processing

Processing chain



ASE

GEOS 693 - InSAR and its applications (Fall 2006)

Processing chain

GEOS 693 - InSAR and its applications (Fall 2006)

Data sets

- analog raw data on tape
- capture file
 - telemetry stripped off, digital \rightarrow computer compatible
- level zero data
 - SKY telemetry format (STF)
 - CEOS raw format
- level one data
 - run through a SAR processor (e.g. AISP, PP, Focus)
 - CEOS single look complex

nterferometric processing

Data sets

- satellite data
 - ERS-1, ERS-2, RADARSAT-1, ENVISAT (C-band)
 - JERS-1 (L-band)
- airborne data
 - AirSAR, TOPSAR (research)
 - E-SAR, DOSAR, Star3i (commercial)
- shuttle
 - SIR-C / X-SAR mission (NASA + DLR)
 - Shuttle Radar Topography Mission (SRTM)

Coregistration

- alignment of master and slave image
- trade off between processing time and accuracy of technique applied
- coarse coregistration
 - matching images on a pixel level (shift in x and y)
- fine coregistration
 - sub-pixel alignment of images
 - large variety of techniques

Coregistration

- quality requirement to avoid phase errors
 - $\rightarrow \frac{1}{8}$ of a pixel
- interpolation method
 - nearest neighbor, bilinear, cubic splines, sinc
- quality measure: coherence

Parameters influencing coregistration

- topography
 - different vantage point cause different overlay
 - shift in azimuth direction for non-parallel orbits
- deformation
 - local deformation perpendicular to the slant range vector cause geometric differences
- atmosphere
 - different conditions cause different degrees of refraction and delay of radar signals

Parameters influencing coregistration

- antenna
 - malfunctioning of antenna during one acquisition results in geometric differences

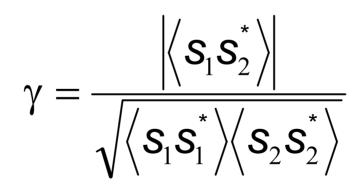
Coarse coregistration techniques

- satellite orbits
 - good for 1-2 pixels
- tie points
 - common tie points in both images
 - last alternative
- multi-resolution sequence
 - also referred to as pyramid construction
 - low resolution to high resolution

Fine coregistration techniques

- maximum coherence
- least-squares intensity
- signal-to-noise ratio
- average fluctuation
- fast Fourier transformation

Interferogram generation


- complex multiplication of the two images
- corresponding amplitudes have to be averaged
- corresponding phases have to be differenced at each point in the image
 - \rightarrow phase difference related to height
- multilooking of interferogram

- measure for the correlation of the phase information of corresponding signals
- ranges from 0 to 1
- quality measure for coregistration

Phase unwrapping

- looking for the correct integer number of phase cycles that needs to be added to each phase measurement to obtain the correct slant range distance
- absolute phase is wrapped into the interval $(-\pi,+\pi] \rightarrow$ ambiguity problem
- solving ambiguity referred to as phase unwrapping

Phase unwrapping

- no standard procedure to solve the phase unwrapping problem
- large variety of algorithms developed
- generally trade off between accuracy of solution and computational requirements
- two types of strategy to solve the phase unwrapping problem
 - path-following methods (local approach)
 - minimum-norm methods (global approach)

Phase unwrapping

- ways of simplifying the problem
 - filtering the phase before unwrapping
 - removing topographic phase before unwrapping \rightarrow requires reference DEM
 - choice of geometry: short baseline

Conversion phase to height

- adding of topographic phase (in case removed) before phase unwrapping)
- creation of the elevation map
- estimating an error map based on coherence image, baseline and unwrapped phase
- mapping from slant range to ground range geometry

- defines the transformation between local coordinate system and global Cartesian coordinates
- two different ways of implementation
 - Doppler frequency calculated on DEM positions and satellite orbit (requires reference DEM)
 - refinement of baseline and imaging geometry (no reference DEM required)

