

Geocoding

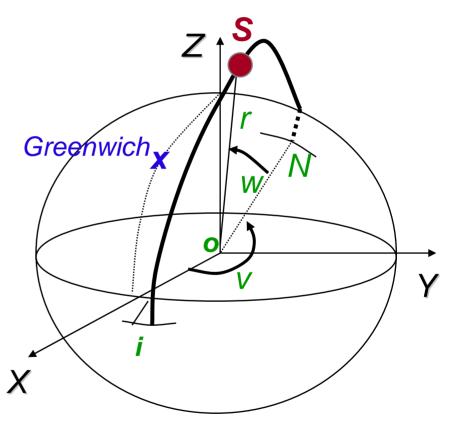
Rüdiger Gens

Definitions

- geocoding
 - geometric transformation of an image into a cartographic map projection
- georeferencing
 - relating image coordinates to map coordinates by defining control points (usually image corners)
- geometric correction and image rectification are sometimes used synonymously
 - geocoding maybe part of geometric correction

Geocoding by co-registration

- image to image
 - reference needs to be map projected
- image to map
 - map in raster or vector format
 - map needs to have map coordinates
- image with measured ground control points
 - ground control points (GCPs) need to be identified in the image
 - GCPs need to be known in some map coordinate system



Sensor Geometric Model

- Sensor Model
 - sensor specific
 - analytical reconstruction of image formation using orbit and sensor parameters
 - corrects image globally
 - small number of ground control points to improve parameters
 - DEM

Examples for sensor model

- optical data
 - Landsat (level 1G)
 - MODIS (level 1B)
 - SPOT (level 2A and 2B)
- radar data
 - any beam mode

Geocoding steps

- relation between image coordinates and geographic coordinates using image geometry
 - line / sample \rightarrow latitude / longitude
- conversion of geographic coordinates into map projected coordinates
 - latitude / longitude $\rightarrow x_{map}$ / y_{map}
 - choice of map projection and datum

Geocoding steps

- determination of a transformation function to map image coordinates into projection coordinates
 - usually quadratic, at times cubic
 - linear least squares polynomial fit
- resampling using mapping function
 - determination of pixel value in the map projected using one of the interpolation methods

Resampling

- transformation of image coordinates into projection coordinates using a mapping function
 - usually determined as a polynomial fit
 - accounts for user defined output pixel size
- determination of the resulting pixel value using an interpolation method

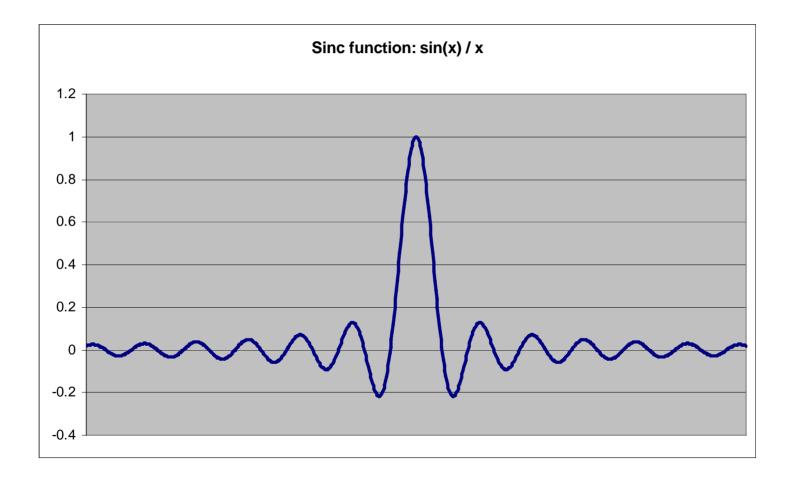
Interpolation artifacts

- ringing
 - arises because most good synthesis functions are oscillating
- aliasing
 - caused by discrete sampling below the Nyquist frequency (i.e. not enough samples to reconstruct the image sufficiently)
 - visual signatures of aliasing are moiré effects and the loss of texture

Interpolation artifacts

- blocking
 - arises when the support of the interpolant is finite
 - synthesis functions with sharp transitions (e.g. nearest neighbor) exacerbate this effect
- blurring
 - mismatch between an intermediate data representation and their resampled version (data too coarse)

Standard interpolation methods


- Nearest neighbor interpolation
 - takes pixel value closest to calculated location
 - preserves original pixel values
- Bilinear interpolation
 - weighted average (2x2 kernel)
 - smoothing effect
- Cubic convolution
 - third degree polynomial fit (4x4 kernel)
 - essentially low-pass filter

Interpolation using Sincs

Interpolation using Sincs

- theoretically ideal filter
 - provides error-free interpolation of the band-limited functions
- problem: no function can be at the same time band-limited and finite-support
- solution: truncation
- practical problem: slowest of the slowest as it requires large kernel sizes

Weighting functions

GEOS 639 - InSAR and its applications (Fall 2006)

Weighting functions

• <u>Hamming</u>

Hamming
$$(x, \tau, \alpha) = \begin{cases} \alpha + (1 - \alpha) \cos(\pi \frac{x}{\tau}) & for |x| < \tau \\ 0 & else \end{cases}$$

- α usually 0.54
- Kaiser

$$Kaiser(x,\tau,\alpha) = \begin{cases} \frac{I_0(\alpha\sqrt{1-(x/\tau)^2})}{I_0(\alpha)} & for |x| \le \tau\\ 0 & else \end{cases}$$

- where *IO(x)* is the zeroth order modified Bessel function
- Lanczos

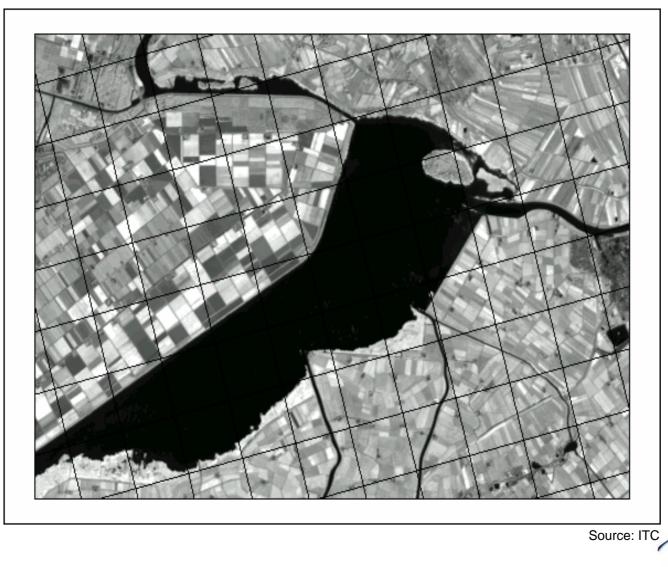
Lanczos
$$(x,\tau) = \begin{cases} \frac{\sin(\pi \frac{x}{\tau})}{\pi \frac{x}{\tau}} & for |x| < \tau \\ 0 & else \end{cases}$$

GEOS 639 - InSAR and its applications (Fall 2006)

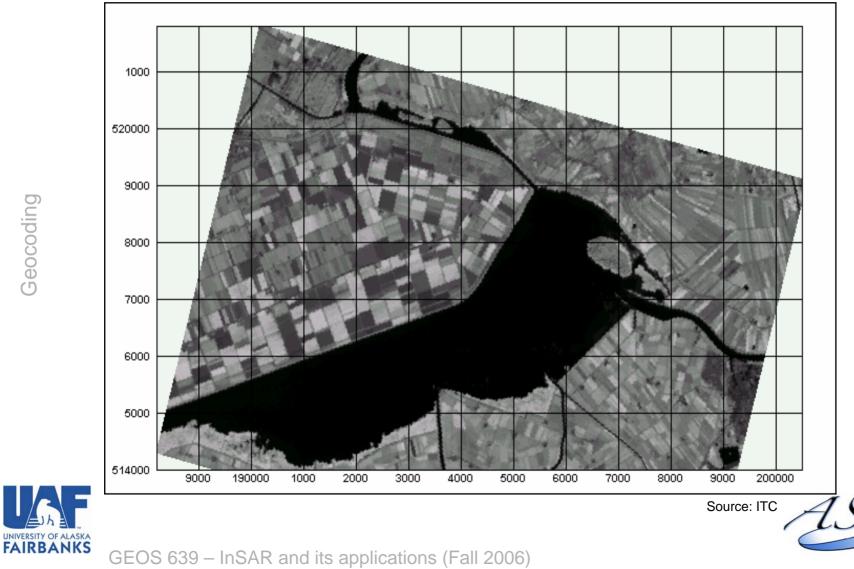
Cubic B-Splines

- piecewise polynomial function of degree three
- very good approximation of sinc function
- generally as fast as cubic convolution
- → best bang for the buck

Example: Original image



GEOS 639 – InSAR and its applications (Fall 2006)


Example: Transformed image

Example: Geocoded image

More background information

- image processing literature
 - medical imaging
 - astronomy
 - signal processing
- remote sensing data providers
 - product descriptions for the various satellite imagery

- geocoding SAR data usually using sensor model
 - ease of use
 - alternative methods cumbersome requires identification of control points
- trade-off between accuracy and speed
- cubic B-splines method of choice for interpolation

