

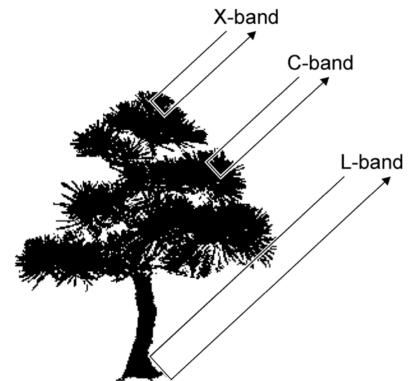
Data selection and interferometric baselines

Rüdiger Gens

Data formats

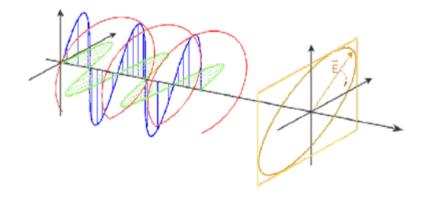
- CEOS single look complex
 - does not require SAR processing
 - order deskewed (zero Doppler)
- CEOS level 0
 - frame based
 - requires SAR processing

Data formats


- Sky Telemetry format (STF)
 - swath data format
 - requires SAR processing
 - allows latitude constraints
 - flexible to cover any area of interest in azimuth direction
 - format of choice

Wavelength

- wavelength determines penetration depth
- shorter wavelengths are backscattered at the surface
- longer wavelengths reaches the topographic surface (sub-surface)



Polarization

Radarsat:
 HH polarization better suited for sea ice

ERS:
 VV polarization for observation of the oceans

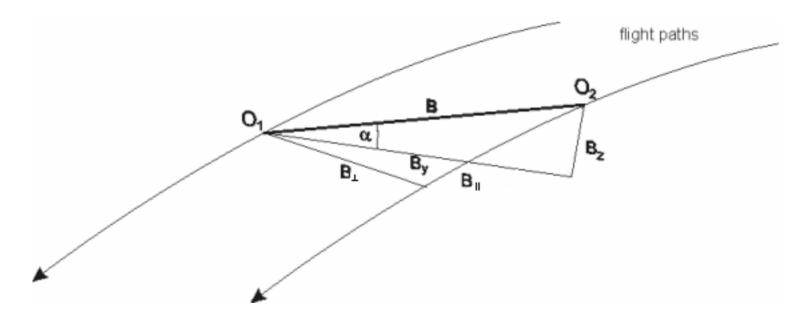
Data availability

- Repeat cycle
 - ERS-1/2: 35 days
 - Radarsat: 24 days
 - JERS-1: 44 days
- Time
 - ERS-1/2: 1991 until present
 - Radarsat: 1995 until present
 - JERS-1: 1992 to 1998

Resolution

- best ground resolution
 - Radarsat: 8 m
 - ERS-1/2, ENVISAT: 30 m
 - JERS-1: 30 m
- coverage
 - Radarsat: 500 x 500 km (ScanSAR)
 - ERS-1/2: 100 x 100 km
 - ENVISAT: 100 x 100 km
 - JERS-1: 75 x 75 km

Precise state vectors


- available for ERS-1/2 data
 - German Aerospace Center (DLR), Germany
 - Technical University Delft, the Netherlands
- effect on DEM accuracy caused by baseline decorrelation smaller than one meter

different representations

- length B and the orientation angle α
- horizontal (By) and vertical (Bz) component
- components (B_{\parallel}) and (B_{\perp}) component

applicability for applications (example ERS)

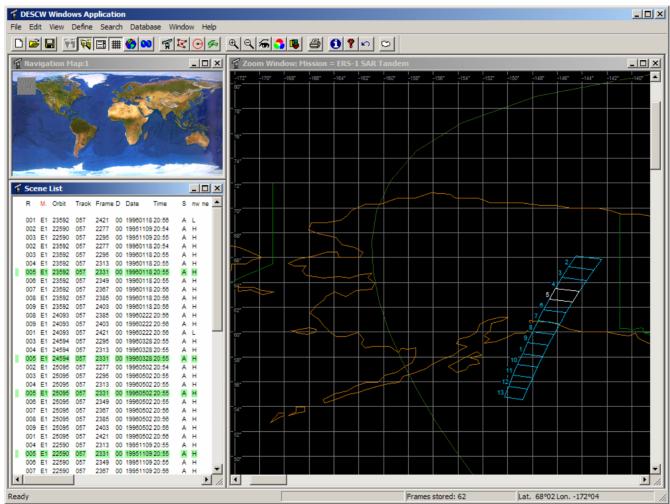
Applications	Baseline
Practical InSAR limit	< B _{perp} < 600 m
Digital Terrain Models	150 m < B _{perp} < 300 m
Surface Change Detection	$30 \text{ m} < B_{perp} < 70 \text{ m}$
Surface Feature Movement	<b<sub>perp< 5 m</b<sub>

- critical baseline
 - for interferometric pairs with a perpendicular baseline B_⊥ beyond a critical value, correlation vanishes because the spectral shift exceeds the pulse bandwidth

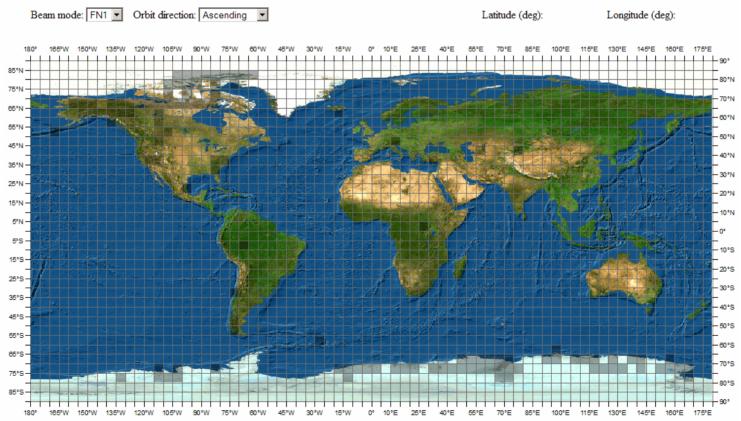
- critical baseline
 - loss of all coherence

$$B_{c} = \frac{\lambda r}{2 R_{y} \cos^{2} \theta}$$

- wavelength λ
- range r
- resolution in range R_y
- look angle θ


- perpendicular baseline component B_⊥ can be used to describe the sensitivity of an interferometric pair to topographic elevation
- large parallel baseline component B_∥ will produce a high background fringe rate due to "flat" topography – needs to be known quite accurately to get a topographic map with no cross-track tilt

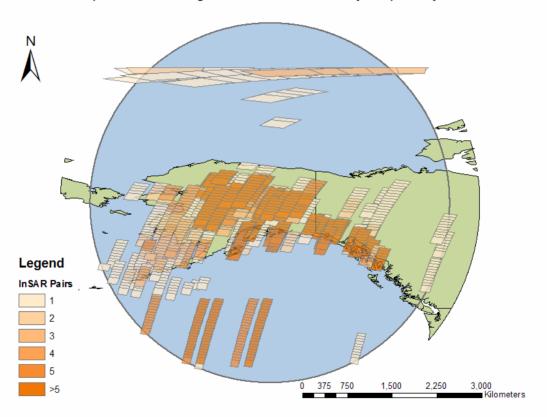
Descw



Radarsat baseline catalog

Radarsat-1 interferometric baseline catalog

This interface lets you search for available interferometric pairs in the ASF archive using a world map which has been divided in 5x5° grids. Grids for which interferometric pairs are available are highlighted in dark tones. Clicking on the individual grid cell will allow you to download the baseline information as a zipped text file and a zipped ArcGIS shape file. Baselines can also be searched using a <u>text only version</u>.


http://www.asf.alaska.edu/baselines/

Radarsat baseline catalog

RADARSAT-1: InSAR Coverage for ASF Station Mask Example: Descending ST2 orbits with 24 days repeat cycle

