Calculation of ASF CEOS Metadata Values

Manual
by
Tom Logan and Rüdiger Gens

Version 1.4
September 2001

TABLE OF CONTENTS

TABLE OF CONTENTS 3
LIST OF TABLES 5
LIST OF FIGURES 7
LIST OF SYMBOLS 9
LIST OF ACRONYMS AND ABBREVIATIONS 11

1. INTRODUCTION 13
2. ASF CEOS PRODUCTS 15
3. CONSTANTS AND FIXED PARAMETERS 17
3.1 Universal Constants 17
3.2 Sensor/Mode Based Constants 17
3.3 Parameters Fixed by Processing System 20
3.4 About ASF Image Names 21
4. CEOS STRUCTURES 23
4.1 ASF CEOS Constants 23
4.2 Image Name Fields 24
4.3 Processing Flags 25
4.4 Product Type/Size Fields 26
5. GEOMETRIC CALCULATIONS 29
5.1 CEOS FIELDS Which are assumed to be correct 29
Slant Ranges 29
Spacecraft State Vectors 31
Image Timings 32
Greenwich Hour Angle 32
Doppler centroid frequencies 32
5.2 Nadir Calculations 34
Radius of the Earth and longitude at the nadir 34
Spacecraft altitude and latitude at the nadir 35
5.3 GEOREFERENCING InFORMATION 36
5.4 Image Center Calculations 36
Radius of the Earth at the Center of the image 36
Central Look Angle 37
Central incidence angle 38
5.5 Scene Sizes and Natural Pixel Spacings 39
Scene width in range 39
Scene length in azimuth 40
Swath velocity 40
Natural azimuth data spacing 40
Natural (slant) range data spacing 40
5.6 Image Heading Fields 41
Processed scene center heading 41
Platform heading / FACDR track angle 42
REFERENCES 45
APPENDIX A: MATHEMATICAL BACKGROUND 47
APPENDIX B: TRANSFORMATIONS FOR SLANT RANGE AND GROUND RANGE 51
APPENDIX C: EARTH LATITUDES AND COORDINATE SYSTEMS 55
APPENDIX D: GEOLOCATION ALGORITHM 63
APPENDIX E: ASF IMAGE ORIENTATIONS 71
INDEX 73

LIST OF TABLES

Table 2.1: CEOS leader file record 16
Table 3.1: Definitions of universal constants 17
Table 3.2: Satellite acronyms 18
Table 3.3: Radarsat imaging modes 19
Table 3.4: SAR sensor fixed parameters 20
Table 3.5: SAR correlation algorithms and weighting functions 20
Table 3.6: Global parameters determined from the image name 21
Table 4.1: Constants fields in the CEOS records 24
Table 4.2: Name fields in the CEOS records 25
Table 4.3: Processing and information flags in CEOS metadata 26
Table 4.4: Pixel spacing for different Radarsat modes 27
Table G.1: Time direction. 71

LIST OF FIGURES

Figure 2.1: CEOS wrapper 15
Figure 5.1: Geodetic spacecraft altitude 35
Figure 5.2: Central incidence angle 39
Figure 5.3: Heading angle 42
Figure 5.4: Actual heading angle 42
Figure A.1: Range from Earth center to spacecraft 9
Figure C.1: Dot product of two vectors 47
Figure C.2: Spherical coordinates 48
Figure C.3: Definition of an ellipse 48
Figure D.1: Range geometry 52
Figure E.1: Geocentric and geodetic latitude 55
Figure E.2: Reduced and geodetic latitude 56
Figure E.3: Reduced and geocentric latitude 59
Figure F.1: Look angle update (Δ_{θ}) 64
Figure F.2: Point vector for the spacecraft. 65
Figure F.3: Target position vector. 66
Figure F.4: Incidence angle 68
Figure F.5: Geometry for Doppler frequency calculations 70
Figure G.1: Ascending and descending orbits 71
Figure G.2: Time directions for ascending and descending orbits 72

LIST OF SYMBOLS

α	Squint angle
γ	Difference from geodetic to geocentric latitude $\left(\gamma=\theta_{\mathrm{D}}-\theta_{\mathrm{C}}\right)$
Δ_{AZ}	Azimuth Line Spacing
Δ_{GR}	Ground Range Pixel Spacing
$\Delta \mathrm{L}$	
Δ_{SR}	Slant Range Pixel Spacing
$\Delta \theta$	Look angle update
$\Delta \varphi$	Change in incidence angle
θ	Look angle
θ_{C}	Geocentric Latitude
θ_{D}	Geodetic Latitude
θ_{SC}	Platform Latitude
λ	Radar Wavelength (meters)

Figure i.1: Range from Earth center to spacecraft
$\rho \quad$ Central Earth angle
$\tau \quad$ Range gate delay
$\varphi \quad$ Incidence angle
$\omega_{\mathrm{E}} \quad$ Earth rotation rate (degrees)
$\left\{\mathrm{vx}_{0}, \mathrm{vy}_{0}, \mathrm{vz}_{0}\right\}$ Spacecraft Platform Velocity vector for start of image frame $\left\{\mathrm{vx}_{1}, \mathrm{vy}_{1}, \mathrm{vz}_{1}\right\}$ Spacecraft Platform Velocity vector for center of image frame $\left\{\mathrm{vx}_{2}, \mathrm{vy}_{2}, \mathrm{vz}_{2}\right\}$ Spacecraft Platform Velocity vector for end of image frame $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\} \quad$ Spacecraft Platform Position vector for start of image frame $\left\{\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right\} \quad$ Spacecraft Platform Position vector for center of image frame $\left\{\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right\} \quad$ Spacecraft Platform Position vector for end of image frame

BM	Beam mode
BN	Beam Number
C	Speed of Light (m / s)
d	Straight line distance between first and last state vector
$\mathrm{D}_{\text {A }}$	Swath width in azimuth direction
D_{R}	Swath width in range direction
DTR	Degrees to radians conversion factor
ECC_E	Eccentricity of the Earth
ECC2	Eccentricity of the Earth squared
$\mathrm{f}_{\mathrm{D} 0}$	Doppler centroid frequency near range
$\mathrm{f}_{\mathrm{D} 1}$	Doppler centroid frequency mid-range
$\mathrm{f}_{\mathrm{D} 2}$	Doppler centroid frequency far range
f_{S}	Complex Sampling Rate (MHz)
$\mathrm{GHA}_{\mathrm{F}}$	Greenwich hour angle for start of imaging period
$\mathrm{GHA}_{\mathrm{L}}$	Greenwich hour angle for end of imaging period
$\mathrm{GHA}_{\mathrm{M}}$	Greenwich hour angle for middle of imaging period
H	Spacecraft Altitude; Height of platform above ellipsoid surface
L	Number of lines in the image product
L_{C}	Center line number in the image
ORBIT	Orbit number
P	Number of pixels in the image product
P_{C}	Center pixel number in the image
PF	Platform Name \{ E1, E2, R1, J1 \}
PIXSIZ	Pixel spacing
PM	Processor Mode
PT	Projection Type
r	Radius at first spacecraft position
RE	Equatorial Earth radius
RE_{C}	Radius of the Earth at the center of the image
RE_{N}	Radius of the Earth at the nadir (center of the image time)
RP	Polar Earth radius
$\mathrm{R}_{\text {SC }}$	Range from Earth center to spacecraft ; equal to mag(scVec[1])
RTD	Radians to degrees conversion factor
SR_{C}	Slant Range to the center of the image
SR_{F}	Slant Range to the first pixel of the image
SR_{L}	Slant Range to the last pixel of the image
V_{R}	Relative velocity between Radar and Target
$\mathrm{V}_{\text {SW }}$	Velocity of the swath on the ground

LIST OF ACRONYMS AND ABBREVIATIONS

ASF	- Alaska SAR Facility
ATDR	- Attitude Data Record
BM	- Beam Mode
BN	- Beam Number
CCSD	- Computer compatible signal data
CEOS	- Committee on Earth Observation Systems
DQSR	- Data Quality Summary Record
DS	- Data Spacing
DSSR	- Dataset Summary Record
DTR	- Degrees to Radians conversion factor
DWP	- Data window position
EBF	- Earth Body Fixed
EH	- Extended high incidence beam
EL	- Extended low incidence beam
FACDR	- Facility Related Data Record
FDR	- Leader File Descriptor Record
FN	- Fine Beam
GCD	- Geocoded
GEI	- Geocentric Equatorial Inertial
GHA	- Greenwich Hour Angle (degrees)
GRF	- Georeferenced (ground range or slant range)
MPDR	- Map Projection Data Record
PDHR	- Processed Data Histogram Record
PF	- Platform Name
PIXSIZ	- Pixel Size (spacing) (m)
PM	- Processor Mode
PPDR	- Platform Position Data Record
PRF	- Pulse Repetition Frequency (Hz)
PT	- Projection Type
RADDR	- Radiometric Data Record
RSR	- Range Spectra Record
RTD	- Radians to Degrees conversion factor
SDHR	- Signal Data Histogram Record
SN	- ScanSAR narrow beam
ST	- Standard Beam
SW	- ScanSAR wide beam
WD	- Wide Beam

1. INTRODUCTION

This manual is the result of developing software tools for radar images and looking into their data quality for several years. Often, troubleshooting problems related to theses activities requires the calculation and derivation of CEOS metadata values. The set of formulas has grown with time into a larger document. With some organizational work it made it to the manual in its present form.

This manual is organized in the following way:
In chapter ASF CEOS products the CEOS records in which the metadata values are stored are described in detail.
The constants and fixed parameters used in the processing are defined and the ASF naming conventions are explained.
The CEOS structures have various fields that are constant. Furthermore, the structures contain fields with information on image name, processing as well as product type and size.
The geometric calculations are the core of this manual as they describe the way how to determine the most important metadata values.
The appendices expand on details of the geometric calculations: the mathematical background (basics of vector mathematics, spherical coordinates and the definition of an ellipse), the transformations for slant range and ground range, the Earth latitudes and coordinate systems, the geolocation algorithm and the ASF image orientation.
In the electronic version, green colored terms indicate cross links within the document

2. ASF CEOS PRODUCTS

The Alaska SAR Facility (ASF) uses the Committee on Earth Observation Systems (CEOS) standards for image product formats. This standard defines two file types, a self describing data file (.D) and an external leader file (.L) containing relevant information on the product's origin and processing history.

The CEOS structures included in the data files are collectively referred to as the CEOS "wrapper", shown in Figure 2.1. The image file descriptor record, which provides information on the size and layout of the data in the remaining lines of the file, precedes the data file. Each line of the data file starts with a record header which gives information about the record it precedes including the record count and record length.

Figure 2.1: CEOS wrapper

The CEOS leader file contains a varying number of metadata records depending on the type of product:

> CCSD - Computer Compatible Signal Data,
> GRF - Georeferenced (ground range or slant range), or
> GCD - Geocoded.

The occurrence of each of the record types is as follows:

Record type	Acronym	CCSD	GRF	GCD
Leader File Descriptor	FDR	x	x	x
Dataset Summary	DSSR	x	x	x
Map Projection Data	MPDR			x
Platform Position Data	PPDR	x	x	x
Attitude Data	ATDR	x	x	x
Radiometric Data	RADDR		x	x
Data Quality Summary	DQSR		x	x

Record type	Acronym	CCSD	GRF	GCD
Signal Data Histogram	SDHR	x	x	x
Processed Data Histogram	PDHR		x	x
Range Spectra	RSR	x	x	x
Facility Related Data	FACDR	x	x	x

Table 2.1: CEOS leader file record

This document will be restricted to the derivation of the most commonly used fields of these record structures. For a complete listing of the CEOS fields used by ASF please refer to the ASF Product Format Specification document (Bicknell, 1997).

3. CONSTANTS AND FIXED PARAMETERS

In this chapter, the constants and fixed parameters used during the SAR processing are discussed in detail.

A small number of universal constants need to be defined. The radar satellite data received and processed at ASF are acquired with different sensors operating in various modes. These data sets have sensor/mode specific constants. Furthermore, there are fixed parameters that describe the algorithm used for the SAR processing. Finally, ASF stores its products with unique names that contain information about the data source and the type of processing.

3.1 Universal Constants

Before entering the core of calculating some constants need to be defined for the use in various calculations. These are given in Table 3.1.

Identifier	Description	Value
C	Speed of Light (m/s)	2.99792458 E8
RE	GEM6 Model Equatorial Earth Radius (km)	6378.144
RP	GEM6 Model Polar Earth Radius (km)	6356.7549
ECC_E	GEM6 Model Eccentricity of the Earth	8.1827385 E-2
ECC2	Eccentricity of the Earth squared	ECC_E * ECC_E
ω_{E}	Earth Sidereal Rotation Rate (degrees/sec)	0.00417807442
RTD	Radians to Degrees Conversion Factor	$180.0 / \pi$
DTR	Degrees to Radians Conversion Factor	$\pi / 180.0$

Table 3.1: Definitions of universal constants

3.2 SENSOR/MODE BASEd CONSTANTS

A certain number of the fields in the CEOS structures is determined directly from the sensor and mode that it is operated in. ASF receives and processes data from four different SAR platforms.

Platform	Acronym	Flight Agency
European Remote Sensing Satellite -1	ERS-1	European Space Agency (ESA)
European Remote Sensing Satellite -2	ERS-2	European Space Agency (ESA)
Japanese Earth Resources Satellite -1	JERS-1	National Space Development Agency (NASDA)
Radar Satellite -1	RADARSAT-1	Canadian Space Agency (CSA)

Table 3.2: Satellite acronyms
The ERS-1, ERS-2, and JERS-1 satellites only operate in a single fixed mode. The Radarsat-1 satellite can be operated in 26 different modes, each of which provides different image geometry characteristics. The modes are classified as standard (ST), fine (FN), wide (WD), extended high incidence (EH), extended low incidence (EL), ScanSAR wide (SW), and ScanSAR narrow (SN). Each of these modes has from 1 to 7 different beams that can be used, as indicated in the Radarsat imaging modes Table 3.3.

Beam Name	Range Sampling Rate	PRF	Range Bandwidth	Electronic Boresight	N Pulses
ST1	18.46	1316	17.48	20.366	7
ST2	18.46	1276	17.48	24.2	7
ST3	12.92	1354	11.78		8
ST4	12.92	1315	11.78	31.875	8
ST5	12.92	1275	11.78	34.064	8
ST6	12.92	1334	11.78	38.20718	9
ST7	12.92	1276	11.78	40.438	9
WD1	12.927	1270	11.58		7
WD2	12.927	1310	11.58		8
WD3	12.927	1350	11.58		9
FN1	32.317	1300	30.002		8
FN2	32.317	1270	30.002		8
FN3	32.317	1330	30.002		9
FN4	32.317	1315	30.002		9
FN5	32.317	1300	30.002		9
EL1	12.927	1345	11.58		$?$

Beam Name	Range Sampling Rate	PRF	Range Bandwidth	Electronic Boresight	N Pulses
EH1	12.927	1345	11.58		10
EH2	12.927	1307	11.58		10
EH3	12.927	1270	11.58		10
EH4	12.927	1245	11.58		11
EH5	12.927	1307	11.58		11
EH6	12.927	1270	11.58		11
SWA	12.927	VAR	11.58		$*$
SWB	12.927	VAR	11.58		$*$
SNA	12.927	VAR	11.58		$*$
SNB	12.927	VAR	11.58		$*$

Table 3.3: Radarsat imaging modes
Using the table above as a reference, we now define two new variables, the beam mode $B M$ and beam number $B N$.
$B M$ takes the value of the first two characters of the beam name, while $B N$ takes the value of the last. For ERS-1, ERS-2, and JERS-1, $B M=\mathrm{ST}$ and $B N=1$.

What follows is a table of the most important SAR sensor parameters for each of the satellite data that ASF processes. This table gives the parameter name, the CEOS record the value is stored in, the units, and the values for each of the platforms. Also, the identifier used to reference the value later in this document is given in the last column.

Parameter	CEOS record	Units	ERS1/2	RSAT-1	JERS-1	Identifier
Antenna Length		m	10	15	11.9	
Antenna Width		m	1	1.5	2.4	
Frequency of Carrier Wave	DSSR	GHz	5.3	5.3	1.275	
Wavelength	DSSR	m	0.0565646	0.0565646	0.23513	λ
Range Pulse Length	DSSR	$\mu \mathrm{sec}$	37.1	42	35	
Quantization Bits	DSSR, FACDR	bits	5	4	3	
Chirp Slope	DSSR	$\mathrm{Hz} / \mathrm{sec}$	4.19 E 11			

Parameter	CEOS record	Units	ERS1/2	RSAT-1	JERS-1	Identifier
Range Sampling Rate	DSSR	MHz	18.96	VAR *	17.08	f_{s}
Electronic Boresight	DSSR	deg	20.3	VAR *		
Pulse Repetition Frequency	DSSR, FACDR	Hz	1679.9	VAR *	1555	PRF
Elevation Beamwidth	DSSR	deg	5.4			
Azimuth Beamwidth	DSSR	deg	0.2852			
Azimuth Bandwidth	DSSR	Hz	1260	960	1157	
Range Bandwidth	DSSR	MHz	15.55	VAR *	15	
Data Rate	FACDR	$\mathrm{Mbits/sec}$	105			

* These parameters vary based on the imaging mode, see previous table
${ }^{1}$ PRF varies based on spacecraft altitude; the values given are averages

Table 3.4: SAR sensor fixed parameters

3.3 Parameters Fixed by Processing System

Several fields of the dataset summary record contain information regarding the SAR correlation algorithm that was used on the data. Depending on the type of SAR signal being processed and the type of output image desired, one of three different SAR correlation algorithms are used by ASF. Also, two different weighting functions are used.

Field Name	Field Value	Conditional
facility id	ASF-PGS	
system id	\{ASP,SSP-2,SSP-1,PREC $\}$	
version id	<contains system version>	BM = SW, SN PM $=$ R, S Otherwise
algorithm id	DERAMP FFT RANGE DOPPLER CHIRP SCALING	ASP system other systems
azimuth weighting	COSINE SQUARED ON PEDESTAL KAISER	ASP system other systems
range weighting	COSINE SQUARED ON PEDESTAL KAISER	

Table 3.5: SAR correlation algorithms and weighting functions

3.4 About ASF Image Names

The ASF product names are designed to uniquely identify the source of the SAR data and the amount and type of processing that has been performed on the data.

Filename Syntax: PPRRRRRFFFMDSvvv.T

$\boldsymbol{P P}$	Platform name (E1, E2, R1, J1) indicates platform that collected the data
$\boldsymbol{R R} \boldsymbol{R} \boldsymbol{R} \boldsymbol{R}$	Satellite revolution (or orbit) number for this data take
$\boldsymbol{F F F F}$	Fixed frame numbering scheme relative to ascending node (001-900)
\boldsymbol{M}	Projection type (S - slant range, G - ground range, or geocoded:
	U - Universal Transverse Mercator; P - Polar Stereographic; L - Lambert)
\boldsymbol{D}	Data pixel spacing = 2**D 6.25 meters (0 also means natural spacing)
\boldsymbol{S}	Processor mode (S - Standard, C - CCSD, X - Complex, R - RAMP)
$\boldsymbol{v} \boldsymbol{v} \boldsymbol{v}$	Version of product type
\boldsymbol{T}	File type (L - CEOS Leader, D - CEOS Data)

Each of these fields in an image name will play a role in determining the correct values to be placed in certain CEOS fields. The following table defines the identifiers that will be used to reference the values in the remainder of this document.

Identifier	Description	Value	
PF	Platform Name	E1, E2, J1, R1	
ORBIT	Orbit Number	5-digit Number	
FRAME	Frame Number	1-900	
PT	Projection Type	S, G, U, P, L	
DS	Data Spacing Number	0,1,2, ..	
PM	Processor Mode	C, X, S, R	
PIXSIZ	Pixel Spacing	$\begin{aligned} & \hline \text { Natural }^{1} \\ & 25.0 \\ & 6.25^{*} 2^{\mathrm{DS}} \\ & \hline \end{aligned}$	if $P M=\mathrm{C}, \mathrm{X}$ if $P M=\mathrm{R}$ otherwise

${ }^{1}$ See section 5.5 for discussion of natural pixel spacings
Table 3.6: Global parameters determined from the image name

4. CEOS STRUCTURES

In this chapter the ASF CEOS constants, image name fields, processing flags and product type/size fields that are filled into the various CEOS metadata records are introduced.

4.1 ASF CEOS CONSTANTS

Many of the fields in the CEOS records are always set to the same value. These are the "constant" fields. What follows is a list of the field names and values by record type. All of these values were taken from the ASF Product Format Specifications (Bicknell, 1997).

CEOS record	Field Name	Field Value
$\begin{aligned} & \text { ¢ } \\ & \text { N } \end{aligned}$	ellipsoid designator	GEM06
	ellipsoid semi-major	6378.144 km
	ellipsoid semi-minor	6356.7459 km
	Earth mass constant	398600.5 (unit???)
	gravitational constant	9.8 m/ ${ }^{2}$
	ellipsoid J2 parameter	0.0010826
	ellipsoid J3 parameter	-0.0000025
	ellipsoid J4 parameter	-1610000.0
	terrain height	0.0
	number of SAR channels	1
	motion compensation indicator	00
	range pulse code specifier	LINEAR FM CHIRPS
	quantizer description	UNIFORM I, Q
	baseband flag	YES
	range compressed flag	NOT
	receiver gain like polarization	0.0
	receiver gain cross polarization	0.0
	mechanical boresight	0.0
	radiometric stretch term 1	0.0
	radiometric stretch term 2	0.0
	range compression designator	SYNTHETIC CHIRP
	clutterlock flag	YES

CEOS record	Field Name	Field Value
-	orbital elements designator	KEPLERIAN ORBITAL ELEMENTS
	number of data sets	3
	reference coordinate system	GEOCENTRIC EQUATORIAL INERTIAL
$\frac{\stackrel{\pi}{0}}{6}$	pitch rate flag	blank
	roll rate flag	blank
	yaw rate flag	blank
$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{\mathbf{O}} \end{aligned}$	look energy normalized flag	NOT
	image processing type	SF
	terrain height above geoid	0.0
	estimated noise floor	-21.0
	radiometric resolution	0.1
	clutterlock flag	YES
	on-board range compression flag	NOT

Table 4.1: Constants fields in the CEOS records

4.2 Image Name Fields

Several different image "name" fields occur within the CEOS records. The contents of these fields can be determined from the product name as follows:

Let "fullname" be the image name without the version number, "codename" be the fullname without the platform string and orbit number.

CEOS record	Field Name	Field Value(s)	Conditional
$\begin{aligned} & \text { ¢ } \\ & \text { 欠 } \end{aligned}$	product id	<fullname>	
	facility code	<codename>	
	orbital revolution	ORBIT	
	mission id	\{ERS-1,ERS-2,JERS-1,RADARSAT-1\}	
	sensor id	ERS-1-C - -VV ERS-2-C - -VV JERS-1-L - -VV RADARSAT-1-C - -HH	$\begin{aligned} & \text { if } P F=E 1 \\ & \text { if } P F=E 2 \\ & \text { if } P F=J 1 \\ & \text { if } P F=R 1 \end{aligned}$

CEOS record	Field Name	Field Value(s)	Conditional
$\xrightarrow{0}$	data take id	<fullname>	
	image id	<codename>	
	site name	<codename>	
	platform	\{ERS-1,ERS-2,JERS-1,RADARSAT-1\}	
	sensor and mode	ERS-1-C - -VV ERS-2-C - -VV JERS-1-L - -VV RADARSAT-1-C - -HH	$\begin{aligned} & \text { if } P F=E 1 \\ & \text { if } P F=E 2 \\ & \text { if } P F=J 1 \\ & \text { if } P F=R 1 \end{aligned}$

Table 4.2: Name fields in the CEOS records

4.3 Processing Flags

Throughout the CEOS metadata, several processing/informational flags occur. These are set based on the type and amount of processing that has been performed (among other things) as indicated by the following Table 4.3.

CEOS record	Field Name	Field Value(s)	Conditional
$\begin{aligned} & \text { ๙్ల } \\ & \text { N } \end{aligned}$	ascending/descending flag	$\begin{aligned} & \hline \text { A } \\ & \text { D } \end{aligned}$	if (frame < 226 or frame > 674) otherwise
	time direction (range)	blank INCREASE	$\text { if } P T=\mathrm{U}, \mathrm{P}, \mathrm{~L}$ otherwise
	time direction (azimuth)	blank INCREASE DECREASE	if $P T=U, \mathrm{P}, \mathrm{L}$ if $P M=\mathrm{C}, \mathrm{R}$ otherwise
	line content indicator	OTHER RANGE	if $P T=\mathrm{U}, \mathrm{P}, \mathrm{L}$ otherwise
	sensor clock angle	$\begin{aligned} & 90.0 \\ & -90.0 \end{aligned}$	for right looking for left looking
	echo tracker flag	blank \{ON,OFF\}	if $P M=\mathrm{C}$ otherwise

CEOS record	Field Name	Field Value(s)	Conditional
$\stackrel{\underset{\sim}{0}}{\underset{\sim}{4}}$	ascending/descending flag	ASCENDING DESCENDING	if (frame < 226 or frame >674) otherwise
	spacecraft roll flag	\{0,-1\}	
	spacecraft yaw flag	$\{0,-1\}$	
	spacecraft pitch flag	$\{0,-1\}$	
	spacecraft roll rate flag	\{0,-1\}	
	spacecraft yaw rate flag	\{0,-1\}	
	spacecraft pitch rate flag	$\{0,-1\}$	
	ephemeris type identifier	\{R,P,D\}	
	ground/slant range indicator	SLANT GROUND	if $P T=S$ otherwise
	deskew flag	$\begin{aligned} & \text { NOT } \\ & \text { YES } \end{aligned}$	if $P T=\mathrm{S}$ otherwise

Table 4.3: Processing and information flags in CEOS metadata

4.4 Product Type/Size Fields

The dataset summary record contains a product type field, that takes the values:

SCANSAR	if $B M=\mathrm{SW}, \mathrm{SN}$
RAMP	if $P M=\mathrm{R}$
CCSD	if $P M=\mathrm{C}$
COMPLEX	if $P M=\mathrm{X}$
\{FULL,CEOS_LOW\}	otherwise

The following table captures the relationship between product type, pixel spacings, and the number of lines and samples in detected image products. The number of lines and samples (total lines/total samples from the FACDR) and pixel spacing (line spacing / pixel spacing from the DSSR and pixel spacing in azimuth / pixel spacing in range from the FACDR) are decided by beam and product type as

Beam Mode	Product Type	PIXSIZ	NL, NS
ST	FULL	12.5	8192,8192
	CEOS_LOW	100.0	1024,1024
WD	FULL	25.0	6144,6144
	CEOS_LOW	200.0	768,768
FN	FULL	6.25	8192,8192
	CEOS_LOW	50	1024,1024
EL	FULL	12.5	12288,12288
	CEOS_LOW	100	1536,1536
EH	FULL	12.5	8192,8192
	CEOS_LOW	100.0	1024,1024
SW	SCANSAR	50	11000,11000
	SCANSAR	100	5500,5500
	SCANSAR	400	1375,1375
SN	SCANSAR	50	6144,6144
	SCANSAR	100	3072,3072
	SCANSAR	400	768,768

Table 4.4: Pixel spacing for different Radarsat modes
Note: This table does not apply to RAMP, CCSD, or COMPLEX For a description of the sizes for those images pleases refer to Bicknell (1997).

The dataset summary record also contains fields for the center line and center pixel of an image. These come directly from the formulas:

$$
\begin{align*}
& \mathrm{L}_{\mathrm{C}}=\frac{\text { total lines }}{2.0}+0.5 \tag{4.1}\\
& \mathrm{P}_{\mathrm{C}}=\frac{\text { total pixels }}{2.0}+0.5
\end{align*}
$$

5. GEOMETRIC CALCULATIONS

5.1 CEOS FIELDS WHICH ARE ASSUMED TO BE CORRECT

In order to derive the scene dependent parameters for an image, we need a basic set that is assumed to be correct. What follows is a discussion of these parameters:

Slant Ranges

The first set of critical parameters are the slant ranges from the satellite to the Earth's surface. These are the straight line distances from the satellite to the Earth's surface at the first pixel, center pixel, and last pixel of the swath. From the slant ranges, we calculate MANY of the other geometric parameters.

Slant Range to the First Pixel in the image swath $\left(\mathrm{SR}_{\mathrm{F}}\right)$:
Taken directly from the FACDR field of the same name.
Slant Range to the Last pixel of the image swath $\left(\mathrm{SR}_{\mathrm{L}}\right)$:
Taken directly from the FACDR field of the same name.
Slant Range to the Center of the image swath (SR_{C}):
In order to calculate various parameters for the center of an image, we must know the slant range distance to the center of the image swath. For the case where the image is still in the slant range projection, $(\mathrm{PT}=\mathrm{S}$ or $\mathrm{PM}=\mathrm{R})$, it is a simple calculation of :

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{C}}=\frac{\left(\mathrm{SR}_{\mathrm{L}}-\mathrm{SR}_{\mathrm{F}}\right)}{2}+\mathrm{SR}_{\mathrm{F}} \tag{5.1}
\end{equation*}
$$

For the case where the image is in ground range projection, it is a bit more challenging. However, using two applications of the law of cosines, the ground range to a pixel of interest can be derived, and from that the slant range to the same pixel can be determined (see Appendix B). This procedure requires the knowledge of the following parameters:
$R_{S C}=$ Range of spacecraft from center of Earth
$\mathrm{SR}_{\mathrm{F}}=$ Slant Range to the first image pixel
$\mathrm{RE}_{\mathrm{C}}=$ Earth radius at the center of the image
$\mathrm{GR}_{\mathrm{X}}=$ Ground range from start of swath to point of interest
The value for SR_{F} is already known. R_{SC} is simply the magnitude of the center spacecraft position state vector (see next section). And, the ground range from the start of the swath to the center pixel is

$$
\begin{equation*}
\mathrm{GR}_{\mathrm{x}}=\frac{\mathrm{P}_{\mathrm{C}} \cdot \text { PIXSIZ }}{1000.0} \tag{5.2}
\end{equation*}
$$

The problem is the value of RE_{C}. There are two different approaches to take. The first approach, adopted by the check_ceos program, is to add the FACDR Earth radius at the center of the image field to the list of CEOS fields that are assumed to be correct. The second approach, would be to calculate and use the value of RE_{N} as an approximation to the Earth radius at the center of the image.

Aside:
In practice, the value for the slant range to the first pixel is taken directly from the FACDR. However, its correctness can be verified. In order to get the slant range, we need the round-trip time τ is needed, for the beam to go from the sensor to the ground and back. This quantity, referred to as the range gate delay, is measured in microseconds. Since the signal moves at the speed of light, the slant range to the first pixel, in km , is given by:

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{F}}=\frac{\tau \cdot \mathrm{C}}{2.0 \cdot 10^{6} \cdot 1000.0} \tag{5.3}
\end{equation*}
$$

where C is the speed of light.
In order to understand the calculation of τ, we need to define a few quantities:

N Pulses (n):

Because of the speed at which the sensor is transmitting signals, several pulses are sent out by the satellite before the first echo is listened for. The number of pulses in the air, n , varies by platform and mode. For ERS-1 and ERS-2 n = 9, for JERS-1 $\mathrm{n}=7$, and n for various Radarsat modes is given in the RADARSAT Imaging Modes table in Table 3.3.

Data Window Position (DWP):

In addition to the number of pulses in the air, the data window position must be taken into account when calculating the range gate delay. The DWP is the value in microseconds from the near-set PRF trigger to the start of the digitization of the return echo. In other words, it is the amount of time after a pulse is sent out that passes by before recording an echo from the ground. The CEOS fields that contain the DWP are:

FACDR datawin
DSSR rng_gate

The total time delay τ for a transmitted pulse to return an echo to the spacecraft including both the DWP and the number of pulses (echoes) in the air is calculated by

$$
\begin{equation*}
\tau=\mathrm{DWP}+\frac{\mathrm{n}}{\mathrm{PRF}} \cdot 10^{6}+\Delta \tag{5.4}
\end{equation*}
$$

Note: Δ is an arbitrary correction needed to compensate for the (unknown) delay in the radar electronics. This fixed quantity is added to τ so that the SR_{F} equation above will hold.

The CEOS Fields that contain the range gate delay τ, are:

$$
\begin{array}{ll}
\text { FACDR } & \text { rangegd } \\
\text { DSSR } & \text { rng_gate1 }
\end{array}
$$

Spacecraft State Vectors

The location of the satellite must be known in order to calculate anything about what it is imaging on the ground. Thus, position and velocity vectors for the spacecraft are given in the CEOS PPDR structure. The three sets of vectors given correspond to the start, center, and end of the imaging period. Values are in geocentric equatorial inertial coordinates with units of km for positions and m / s for velocities.

One needs to be aware of the image time in the azimuth direction (see section 4.3) when determining the proper state vector to use. If the time direction is increasing, the first state vector in the PPDR corresponds to the "top" of the image product, while the last vector refers to the "bottom" of the image product. However, if the time direction is decreasing, then the opposite is true, i.e. the first state vector is for the "bottom" of the image and the last state vector is for the "top" of the image.

Identifiers used in this document to denote these quantities are as follows:

$\left\{\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\}$	Spacecraft Platform Position vector for start of image frame
$\left\{\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right\}$	Spacecraft Platform Position vector for center of image frame
$\left\{\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right\}$	Spacecraft Platform Position vector for end of image frame
$\left\{\mathrm{vx}_{0}, \mathrm{vy}_{0}, \mathrm{vz}_{0}\right\}$	Spacecraft Platform Velocity vector for start of image frame
$\left\{\mathrm{vx}_{1}, \mathrm{vy}_{1}, \mathrm{vz}_{1}\right\}$	Spacecraft Platform Velocity vector for center of image frame
$\left\{\mathrm{vx}_{2}, \mathrm{vy}_{2}, \mathrm{vz}_{2}\right\}$	Spacecraft Platform Velocity vector for end of image frame

Image Timings

In order to determine when the position and velocity vectors occur, the time fields from the PPDR must also be used. Assuming that the state vectors in the PPDR are correct means assuming that the timing given is correct as well. The time values year, month, day of the month, gmt_day, and gmt_sec, refer to the first spacecraft vector. An additional field, the data interval, gives the time interval between state vectors. So, the first state vector corresponds to the time given, the second is data interval seconds later than the first and the last is two times data interval seconds later than the first.

Greenwich Hour Angle

The Greenwich hour angle (GHA) provides the means to convert from geocentric Earthcentered inertial coordinates to Earth body fixed coordinates (see Appendix C for details). Since the GHA measures the Earth's rotation from a fixed position, it changes along the image swath.

Two fields in the PPDR provide the means to determine the GHA during an imaging period. They are the hour angle and the data interval. The first is the base GHA for the beginning of the imaging period. The second is the time difference between the start, center, and ending state vectors. Using these we calculate the GHAs as:

$$
\begin{align*}
\mathrm{GHA}_{\mathrm{F}} & =\text { hour angle } \\
\mathrm{GHA}_{\mathrm{M}} & =\text { hour angle }+\omega_{\mathrm{E}} \cdot \text { data interval } \tag{5.5}\\
\mathrm{GHA}_{\mathrm{L}} & =\text { hour angle }+\omega_{\mathrm{E}} \cdot 2 \cdot \text { data interval }
\end{align*}
$$

where ω_{E} is the Earth rotation rate.

The same comments about the image time directions that applied to the state vectors apply to the GHA.

Doppler centroid frequencies

In order to accurately determine geolocations for images, the Doppler centroid frequency must be known. Coefficients for a quadratic function to calculate the Doppler parameters for an image are given in both the DSSR and the FACDR. The fields pertinent here are:

DSSR: Cross Track Doppler Frequency 1, 2 and 3
FACDR: Doppler Frequency near, slope and quadratic

$$
\begin{align*}
& \mathrm{f}_{\mathrm{D} 0}=\text { Doppler frequency near } \\
& \mathrm{f}_{\mathrm{D} 1}=\mathrm{f}_{\mathrm{D} 0}+\mathrm{P}_{\mathrm{C}} \cdot \text { slope }+\mathrm{P}_{\mathrm{C}}{ }^{2} \cdot \text { quadratic } \tag{5.6}\\
& \mathrm{f}_{\mathrm{D} 2}=\mathrm{f}_{\mathrm{D} 0}+\mathrm{P} \cdot \text { slope }+\mathrm{P}^{2} \cdot \text { quadratic }
\end{align*}
$$

where P_{C} is the center pixel number and P is the number of pixels in the image.

5.2 NADIR Calculations

Radius of the Earth and longitude at the nadir

The nadir is the point on the surface of the Earth directly beneath the platform at the center of the imaging time. A geocentric nadir is determined by the straight line from the platform to the center of the Earth. A geodetic nadir is determined by the straight line from the platform to the perpendicular intersection with the Earth's surface.

For the geocentric nadir point, geolocation is determined by the intersection of the spacecraft vector with the surface of the Earth. Let $\overrightarrow{\mathrm{R}}_{\mathrm{SC}}=\left\{\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right\}$, denote the spacecraft position vector for the center of the image after rotation into Earth body fixed (EBF) coordinates. Then, the spacecraft radius from the center of the Earth is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SC}}=\operatorname{mag}\left(\overrightarrow{\mathrm{R}}_{\mathrm{SC}}\right) \tag{5.7}
\end{equation*}
$$

Using cartesian to spherical conversions, the geocentric and then geodetic latitude and the longitude of the geocentric nadir point can be determined by

$$
\begin{array}{ll}
\theta_{\mathrm{C}}=\arcsin \frac{\mathrm{z}_{1}}{\mathrm{R}_{\mathrm{SC}}} & \text { (Geocentric latitude at nadir) } \\
\theta_{\mathrm{D}}=\arctan \frac{\tan \theta_{\mathrm{C}}}{1-E C C-E^{2}} & \text { (Geodetic latitude at nadir) } \tag{5.8}\\
\text { lon }=\arctan \frac{y_{1}}{\mathrm{x}_{1}} & \text { (Geodetic and geocentric longitude at nadir) }
\end{array}
$$

where ECC_E is the Earth eccentricity.
Since the difference from geocentric to geodetic nadir points is independent of longitude, this is the final form for the spacecraft's longitude at a geocentric as well as a geodetic nadir. However, further derivation is required to reach the final form of the spacecraft's geodetic latitude at a geodetic nadir.

Knowing the geocentric latitude of the nadir, the Earth radius at the geocentric nadir is calculated by

$$
\begin{equation*}
\mathrm{RE}_{\mathrm{N}}=\frac{(\mathrm{RE} \cdot \mathrm{RP})}{\sqrt{\left(\mathrm{RP} \cdot \cos \theta_{\mathrm{C}}\right)^{2}+\left(\mathrm{RE} \cdot \sin \theta_{\mathrm{C}}\right)^{2}}} \tag{5.9}
\end{equation*}
$$

where RE is the equatorial Earth radius and RP is the polar Earth radius.

Spacecraft altitude and latitude at the nadir

Based on the two types of nadir points, there are also two types of spacecraft altitudes. Given the radius to the spacecraft R_{SC}, and the radius of the Earth at the geocentric nadir RE_{N}, the geocentric altitude of the spacecraft above the ellipsoid is a simple difference of the two:

$$
\begin{equation*}
\mathrm{H}^{\prime}=\mathrm{R}_{\mathrm{SC}}-\mathrm{RE}_{\mathrm{N}} \tag{5.10}
\end{equation*}
$$

Thus, H^{\prime} is measured along the shortest distance to the Earth's center; but not the shortest distance to the Earth's surface. Figure 5.1 shows that H, the geodetic spacecraft altitude is not the same as H^{\prime}.

Figure 5.1: Geodetic spacecraft altitude

H can be derived by realizing that the angle γ is equal to the difference from the geodetic to geocentric latitudes calculated above, i.e. $\gamma=\theta_{D}-\theta_{C}$. The approximation that $\gamma_{3} \approx \gamma_{2}=\gamma$ leads to $\mathrm{H}^{\prime}=\mathrm{R}_{\mathrm{SC}}-\mathrm{RE}_{\mathrm{N}}$ and finally to

$$
\begin{equation*}
\cos \gamma=\frac{\mathrm{H}}{\mathrm{H}^{\prime}} \Rightarrow \mathrm{H}=\left(\mathrm{R}_{\mathrm{SC}}-\mathrm{RE}_{\mathrm{N}}\right) \cdot \cos \gamma \quad \text { (geodetic spacecraft altitude) } \tag{5.11}
\end{equation*}
$$

This then, is the spacecraft altitude at the center of the image as calculated in the ASF CEOS metadata. Just as H' does not measure the shortest distance to the Earth's surface, θ_{D} does not measure the true geodetic latitude of the spacecraft's position. The true value is depicted as $\theta_{\text {SC. }}$.

Consider the distance r , which completes the triangle with H^{\prime} and H . This is the distance between the intersection of the vector defined by θ_{D} and the vector defined by θ_{SC}. It can be approximated by

$$
\begin{equation*}
\mathrm{r}=\left(\mathrm{R}_{\mathrm{SC}}-\mathrm{RE}_{\mathrm{N}}\right) \cdot \sin \gamma_{3} \approx \mathrm{H} \cdot \sin \gamma \tag{5.12}
\end{equation*}
$$

Since r is the distance along the (approximately flat) surface of the Earth, $r / \mathrm{RE}_{\mathrm{N}}$ gives an estimate of the difference in the angles from the previously calculated latitude to the latitude that we are searching for. That is,

$$
\begin{equation*}
\theta_{\mathrm{D}}-\theta_{\mathrm{SC}} \approx \frac{\mathrm{r}}{\mathrm{RE}_{\mathrm{N}}} \tag{5.13}
\end{equation*}
$$

Finally then, $\theta_{\text {SC }}$ can be calculated using

$$
\begin{equation*}
\theta_{\mathrm{SC}}=\theta_{\mathrm{D}}-\frac{\mathrm{r}}{\mathrm{RE}_{\mathrm{N}}} \Rightarrow \theta_{\mathrm{SC}}=\theta_{\mathrm{D}}-\frac{\sin \gamma \cdot \mathrm{H}}{\mathrm{RE}_{\mathrm{N}}} \quad \text { (geodetic nadir latitude) } \tag{5.14}
\end{equation*}
$$

This then, is the final form of the equation for computing the spacecraft latitude at the nadir.

5.3 GEOREFERENCING INFORMATION

Geolocations for the image corners are given in the FACDR. Also, a geolocation for the center of the image is included in both the FACDR and the DSSR. Given the slant range to a pixel, the Doppler frequency centroid, and the spacecraft state vector, one can solve for the geolocation of a pixel using an iterative method of adjusting satellite look and squint angles. This method is given in full detail in Appendix D.

It should be mentioned that if the image has already been Doppler deskewed (see processing flags in section 4.3), then the geolocation routine should be called using Doppler centroids of 0 rather than the values calculated in subsection Doppler frequency centroids.

5.4 Image Center Calculations

Radius of the Earth at the Center of the image

Let lat be the geocentric latitude at the center of the image, RE the equatorial Earth radius, and RP the polar Earth radius, then

$$
\begin{equation*}
\mathrm{RE}_{\mathrm{C}}=\frac{\mathrm{RE} \cdot \mathrm{RP}}{\sqrt{(\mathrm{RP} \cdot \cos \mathrm{lat})^{2}+(\mathrm{RE} \cdot \sin \mathrm{lat})^{2}}} \tag{5.15}
\end{equation*}
$$

Central Look Angle

The look angle at the center of an image θ, is defined as the elevation angle from the nadir point to the center of the image subtended by the satellite position. Given the range from Earth center to spacecraft R_{SC} and the slant range to the image center SR_{C}, it can be found by the law of cosines as follows.

$$
\begin{align*}
\mathrm{RE}_{\mathrm{C}}^{2} & =\mathrm{R}_{\mathrm{SC}}^{2}+\mathrm{SR}_{\mathrm{C}}^{2}-2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{SR}_{\mathrm{C}} \cdot \cos \theta \\
\cos \theta & =\frac{\mathrm{R}_{\mathrm{SC}}^{2}+\mathrm{SR}_{\mathrm{C}}^{2}-\mathrm{RE}_{\mathrm{C}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{SR}_{\mathrm{C}}} \tag{5.16}
\end{align*}
$$

using the approximation $\mathrm{R}_{\mathrm{SC}}=\mathrm{RE}_{\mathrm{C}}+\mathrm{H}$ with the geodetic spacecraft altitude H leads to

$$
\begin{align*}
\cos \theta & =\frac{\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)^{2}+\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{RE}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{SR}_{\mathrm{C}} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)} \\
& =\frac{\mathrm{RE}_{\mathrm{C}}{ }^{2}+2 \cdot \mathrm{H} \cdot \mathrm{RE}_{\mathrm{C}}+\mathrm{H}^{2}+\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{RE}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{SR}_{\mathrm{C}} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)} \\
& =\frac{\mathrm{SR}_{\mathrm{C}}{ }^{2}+2 \cdot \mathrm{H} \cdot \mathrm{RE}_{\mathrm{C}}+\mathrm{H}^{2}}{2 \cdot \mathrm{SR}_{\mathrm{C}} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)} \quad \text { [equation D4 from Olmsted (1993)] } \tag{5.17}\\
& =\frac{2 \cdot \mathrm{H} \cdot \mathrm{RE}_{\mathrm{C}}+2 \cdot \mathrm{H}^{2}-\mathrm{H}^{2}+\mathrm{SR}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{SR}_{\mathrm{C}} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)} \\
& =\frac{2 \cdot \mathrm{H} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)+\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{H}^{2}}{2 \cdot \mathrm{SR}_{\mathrm{C}} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}^{2}\right.} \\
& \left.=\frac{2 \cdot \mathrm{H} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)+\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{H}^{2}}{2 \cdot \mathrm{SR}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{SC}}} \quad \text { [approximating } \mathrm{R}_{\mathrm{SC}}=\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right]
\end{align*}
$$

now let, $\Delta=\frac{\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{H}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}}}$
then, $\mathrm{H}+\Delta=\frac{2 \cdot \mathrm{H} \cdot \mathrm{R}_{\mathrm{SC}}+\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{H}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}}}$
and, $\frac{\mathrm{H}+\Delta}{\mathrm{SR}_{\mathrm{C}}}=\frac{2 \cdot \mathrm{H} \cdot \mathrm{R}_{\mathrm{SC}}+\mathrm{SR}_{\mathrm{C}}{ }^{2}-\mathrm{H}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{SR}_{\mathrm{C}}}$
so, finally,

$$
\begin{equation*}
\theta=\arccos \left(\frac{\mathrm{H}+\Delta}{\mathrm{SR}_{\mathrm{C}}}\right) \tag{5.18}
\end{equation*}
$$

Central incidence angle

The central incidence angle φ is the angle between the incident beam, and the extension of a vector from the center of the Earth through the center of the imaging swath. First, the relationship between the central incidence angle φ, the look angle θ, and the central Earth angle ρ needs to be established. Now, $A=180-(\theta+\rho)$. Also, $\varphi+A=180$. This leads to $\varphi+180-(\theta+\rho)=180$, or $\varphi=\theta+\rho$ [equation D2 from Olmsted (1993)]. Given the range from Earth center to spacecraft R_{SC}, the slant range to image center SR_{C}, the Earth radius at image center RE_{C}, the geodetic spacecraft altitude H and using the equation developed in Appendix B for ρ, it can be seen that

$$
\begin{align*}
\cos \rho & =\frac{1+\frac{\mathrm{R}_{\mathrm{SC}}^{2}}{\mathrm{RE}_{\mathrm{C}}^{2}}-\frac{\mathrm{SR}_{\mathrm{C}}^{2}}{\mathrm{RE}_{\mathrm{C}}^{2}}}{\frac{2 \cdot \mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}}}=\frac{\mathrm{RE}_{\mathrm{C}}^{2}+\mathrm{R}_{\mathrm{SC}}^{2}-\mathrm{SR}_{\mathrm{C}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}} \\
& =\frac{\mathrm{RE}_{\mathrm{C}}^{2}+\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}^{2}-\mathrm{SR}_{\mathrm{C}}^{2}\right.}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}}=\frac{2 \cdot \mathrm{RE}_{\mathrm{C}}^{2}+2 \cdot \mathrm{RE}_{\mathrm{C}} \cdot \mathrm{H}+\mathrm{H}^{2}-\mathrm{SR}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}} \\
& =\frac{2 \cdot \mathrm{RE}_{\mathrm{C}} \cdot\left(\mathrm{RE}_{\mathrm{C}}+\mathrm{H}\right)+\mathrm{H}^{2}-\mathrm{SR}_{\mathrm{C}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}}=\frac{2 \cdot \mathrm{RE}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{SC}}+\mathrm{H}^{2}-\mathrm{SR}_{\mathrm{C}}{ }^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}} \tag{5.19}\\
& =1+\frac{\mathrm{H}^{2}-\mathrm{SR}_{\mathrm{C}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}}=1-\frac{\mathrm{SR}_{\mathrm{C}}^{2}-\mathrm{H}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}} \\
& =1-\frac{\Delta}{\mathrm{RE}} \\
\rho & =\arccos \left(1-\frac{\Delta}{\mathrm{RE}_{\mathrm{C}}}\right)
\end{align*}
$$

Figure 5.2: Central incidence angle

Finally, the incidence angle is defined as the sum of the central Earth angle ρ and the look angle θ,

$$
\begin{equation*}
\varphi=\theta+\arccos \left(1-\frac{\Delta}{\mathrm{RE}_{\mathrm{C}}}\right) \tag{5.20}
\end{equation*}
$$

Aside: Relationship of look angle to incidence angle
Using the fact that $\sin (180-\varphi)=\sin \varphi$, and the law of sines, there is

$$
\begin{equation*}
\frac{\sin \theta}{\mathrm{RE}_{\mathrm{C}}}=\frac{\sin \varphi}{\mathrm{R}_{\mathrm{Sc}}} \tag{5.21}
\end{equation*}
$$

5.5 Scene Sizes and Natural Pixel Spacings

Scene width in range

The scene width in range D_{R} is the ground distance width of the image swath. If the image product is in ground range projection $(\mathrm{PT}=\mathrm{G})$, this is simply,

$$
\begin{equation*}
\mathrm{D}_{\mathrm{R}}=\mathrm{P} \cdot \frac{\mathrm{PIXSIZ}}{1000.0} \tag{5.22}
\end{equation*}
$$

with the number of image pixels P and the pixel spacing PIXSIZ.

However, if the image is in a slant range projection, the ground range to the near and far portions of the image swath must first be determined. Then, their difference gives us the swath width (see Appendix B).

Scene length in azimuth

The scene length in azimuth D_{A} is the ground distance length of the image product. This is calculated the same for all product types as

$$
\begin{equation*}
\mathrm{D}_{\mathrm{A}}=\mathrm{L} \cdot \frac{\text { LINESPACING }}{1000.0} \tag{5.23}
\end{equation*}
$$

with the number of lines L and the line spacing LINESPACING.

Swath velocity

The swath velocity $\mathrm{V}_{S W}$ is the speed at which the swath is moving along the surface of the Earth at the beam center. Given the scene length in azimuth D_{A}, it is calculated simply as

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SW}}=1000.0 \cdot \frac{\mathrm{D}_{\mathrm{A}}}{\text { data interval } \cdot 2} \quad(\text { data interval taken from PPDR }) \tag{5.24}
\end{equation*}
$$

Natural azimuth data spacing

The line spacing Δ_{AZ} in an image is determined by dividing swath velocity V_{SW} by the pulse repetition frequency (PRF). That is, the rate the swath is moving on the ground times the interval between pulses gives the distance between lines on the ground.

$$
\begin{equation*}
\Delta_{\mathrm{AZ}}=\frac{\mathrm{V}_{\mathrm{SW}}}{\mathrm{PRF}} \tag{5.25}
\end{equation*}
$$

Natural (slant) range data spacing

The sample spacing Δ_{SR} in an image is determined by the speed of light C divided by the complex sampling rate f_{S} times 2 . That is, the rate that the signal travels times the interval between sampling gives the distance between samples in the ground. The factor of 2 is included because of the round trip that each pulse/echo must make.

$$
\begin{equation*}
\Delta_{\mathrm{SR}}=\frac{\mathrm{C}}{2.0 \cdot \mathrm{f}_{\mathrm{s}}} \tag{5.26}
\end{equation*}
$$

Aside:
The ground range pixel spacing Δ_{GR} can be calculated from the slant range spacing Δ_{SR} and the look angle θ using

$$
\begin{equation*}
\Delta_{\mathrm{GR}}=\frac{\Delta_{\mathrm{SR}}}{\sin \theta} \tag{5.27}
\end{equation*}
$$

5.6 Image Heading Fields

Processed scene center heading

The scene center heading is the angle from North to the direction the spacecraft is traveling across the scene. The method for computing the heading is

1) calculate the geocentric latitudes for the beginning and ending spacecraft state vectors

$$
\begin{align*}
& \theta_{0}=\arccos \sqrt{\frac{\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}}{\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}+\mathrm{z}_{0}{ }^{2}}} \\
& \theta_{2}=\arccos \sqrt{\frac{\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}+\mathrm{z}_{2}}}{}} \tag{5.28}
\end{align*}
$$

2) calculate the arc distance A, directly between the two latitudes at the radius of the first spacecraft position r

$$
\begin{align*}
\mathrm{r} & =\sqrt{\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}+\mathrm{z}_{0}{ }^{2}} \tag{5.29}\\
\mathrm{~A} & =\mathrm{r} \cdot\left|\theta_{2}-\theta_{0}\right|
\end{align*}
$$

3) calculate the straight line distance d, between the beginning and ending spacecraft state vectors

$$
\begin{equation*}
d=\sqrt{\left(x_{0}-x_{2}\right)^{2}+\left(y_{0}-y_{2}\right)^{2}+\left(z_{0}-z_{2}\right)^{2}} \tag{5.30}
\end{equation*}
$$

4) the heading angle α, is taken to be the arcsine of the direct arc length, A, and the magnitude of the change in the satellite's position d

$$
\begin{equation*}
\alpha=\arcsin \left(\frac{\mathrm{A}}{\mathrm{~d}}\right) \tag{5.31}
\end{equation*}
$$

Figure 5.3: Heading angle
5) adjust the heading angle based on the direction of the satellite swath. For a descending swath, the angle α_{1} (shown below) has been measured so that the actual heading from North is $\chi=270-\alpha_{1}$
For an ascending swath, the angle α_{2} (shown below) has been measured so that the actual heading from North is $\chi=270+\alpha_{2}$

Descending: $\chi=270-\alpha_{2} \quad$ Ascending: $\chi=270+\alpha_{2}$

Figure 5.4: Actual heading angle

Platform heading / FACDR track angle

The platform heading is the angle from North to the direction the spacecraft is traveling across the scene. The method for computing the heading is

1) calculate the geocentric latitudes for the beginning and ending spacecraft state vectors

$$
\begin{align*}
& \theta_{0}=\arccos \sqrt{\frac{\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}}{\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}{ }^{2}+\mathrm{z}_{0}{ }^{2}}} \tag{5.32}\\
& \theta_{2}=\arccos \sqrt{\frac{\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}}{\mathrm{x}_{2}{ }^{2}+\mathrm{y}_{2}{ }^{2}+{ }^{2}}}
\end{align*}
$$

2) calculate the arc distance A, directly between the two latitudes at the radius of the Earth at the nadir position RE_{N}

$$
\begin{equation*}
\mathrm{A}=\mathrm{RE}_{\mathrm{N}} \cdot\left|\theta_{2}-\theta_{0}\right| \tag{5.33}
\end{equation*}
$$

3) calculate the ground range length of the swath with the number of lines L and the pixel spacing PIXSIZ

$$
\begin{equation*}
\mathrm{d}=\mathrm{L} \cdot \frac{\text { PIXSIZ }}{1000.0} \tag{5.34}
\end{equation*}
$$

4) the heading angle, α, is taken to be the arcsine of the direct arc length, A , and the ground range swath length, d

$$
\begin{equation*}
\alpha=\arcsin \left(\frac{\mathrm{A}}{\mathrm{~d}}\right) \tag{5.35}
\end{equation*}
$$

5) adjust the heading angle based on the direction of the satellite swath. For a descending swath, the angle α_{1} (shown in Figure 5.4) has been measured so that the actual heading from North is $\chi=270-\alpha_{1}$
For an ascending swath, the angle α_{2} (shown in Figure 5.4) has been measured so that the actual heading from North is $\chi=270+\alpha_{2}$

Descending: $\chi=270-\alpha_{2} \quad$ Ascending: $\chi=270+\alpha_{2}$
(see Figure 5.4)

REFERENCES

Bicknell, T., 1997. ASF Product Format Specification. Release 2.1 Version 1.0. JPL D-13122.

Bate, R., Mueller, R. and White, ??, 1971. Fundamentals of Astrodynamics. Dover Publications: New York.

Curlander, J.C. and McDonough, R.N., 1991, Synthetic Aperture Radar: Systems and Signal Processing. Wiley: New York.

Kreyszig, E., 1993. Advanced Engineering Mathematics (seventh edition), Wiley: New York.

OLMSTED, C., 1993. Alaska SAR Facility Scientific SAR User's Guide. ASF-SD-003.

APPENDIX A: MATHEMATICAL BACKGROUND

I. Vector mathematics

magnitude of a vector, $\overrightarrow{\mathrm{V}}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$, is

$$
\begin{equation*}
|\overrightarrow{\mathrm{V}}|=\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}+\mathrm{v}_{3}^{2}} \tag{A.1}
\end{equation*}
$$

dot product of two vectors, $\overrightarrow{\mathrm{U}}$ and $\overrightarrow{\mathrm{V}}$, is
a. $\quad \overrightarrow{\mathrm{U}} \bullet \overrightarrow{\mathrm{V}} \equiv \mathrm{u}_{1} \mathrm{v}_{1}+\mathrm{u}_{2} \mathrm{v}_{2}+\mathrm{u}_{3} \mathrm{v}_{3}$
b. $\quad \overrightarrow{\mathrm{U}} \bullet \overrightarrow{\mathrm{V}}=|\overrightarrow{\mathrm{U}}| \cdot|\overrightarrow{\mathrm{V}}| \cdot \cos \theta$, where θ is the angle between $\overrightarrow{\mathrm{U}}$ and $\overrightarrow{\mathrm{V}}$
c. $\vec{U} \cdot \vec{V}=0 \Leftrightarrow \vec{U} \perp \vec{V}$

Figure C.1: Dot product of two vectors
cross product of two vectors, $\overrightarrow{\mathrm{U}}$ and $\overrightarrow{\mathrm{V}}$, is
a. $\quad \overrightarrow{\mathrm{U}} \times \overrightarrow{\mathrm{V}} \equiv\left(\mathrm{u}_{1} \mathrm{v}_{2}-\mathrm{u}_{2} \mathrm{v}_{1}, \mathrm{u}_{2} \mathrm{v}_{0}-\mathrm{u}_{0} \mathrm{v}_{2}, \mathrm{u}_{0} \mathrm{v}_{1}-\mathrm{u}_{1} \mathrm{v}_{0}\right)$
b. $\overrightarrow{\mathrm{U}} \times \overrightarrow{\mathrm{V}} \perp \overrightarrow{\mathrm{U}}, \quad \overrightarrow{\mathrm{U}} \times \overrightarrow{\mathrm{V}} \perp \overrightarrow{\mathrm{V}}$
c. $|\overrightarrow{\mathrm{U}} \times \overrightarrow{\mathrm{V}}|=|\overrightarrow{\mathrm{U}}| \cdot|\overrightarrow{\mathrm{V}}| \cdot \sin \theta$, where θ is the angle between $\overrightarrow{\mathrm{U}}$ and $\overrightarrow{\mathrm{V}}$
d. $\overrightarrow{\mathrm{U}} \times \overrightarrow{\mathrm{V}}=0 \Leftrightarrow \overrightarrow{\mathrm{U}} \| \overrightarrow{\mathrm{V}}$
e. $\vec{U} \times \vec{V}=-(\vec{V} \times \vec{U})$
normalize - reduce magnitude of a vector to 1 . Given $\overrightarrow{\mathrm{U}}$,

$$
\begin{equation*}
\operatorname{normalize}(\overrightarrow{\mathrm{U}})=\left\{\frac{\mathrm{u}_{1}}{|\overrightarrow{\mathrm{U}}|}, \frac{\mathrm{u}_{2}}{|\overrightarrow{\mathrm{U}}|}, \frac{\mathrm{u}_{3}}{|\overrightarrow{\mathrm{U}}|}\right\} \tag{A.4}
\end{equation*}
$$

II. Spherical coordinates

Spherical coordinates can be used to define a point in 3-D space much such as the standard cartesian coordinates. Spherical coordinates are characterized by two angles (ϕ, θ) and a radius r, as depicted in Figure C.2. Given a point P, with cartesian coordinates $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$, and spherical coordinates $\{\mathrm{r}, \phi, \theta\}$, their relationships are

$$
\begin{align*}
& \mathrm{x}=\mathrm{r} \cdot \cos \phi \cdot \cos \theta \\
& \mathrm{y}=\mathrm{r} \cdot \sin \phi \cdot \cos \theta \tag{A.5}\\
& \mathrm{z}=\mathrm{r} \cdot \sin \theta \\
& \mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}} \\
& \phi=\arctan \left(\frac{\mathrm{y}}{\mathrm{x}}\right) \tag{A.6}\\
& \theta=\arcsin \left(\frac{\mathrm{z}}{\mathrm{r}}\right)
\end{align*}
$$

Figure C.2: Spherical coordinates

III. Definition of an ellipse

The general equation of an ellipse is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a>b>0 \tag{A.7}
\end{equation*}
$$

Figure C.3: Definition of an ellipse
for which the length of the major axis is 2 a and the length of the minor axis is 2 b . The definition of an ellipse is the set of all points P in a plane such that the sum of the distances from P to two other fixed points, called foci, is a positive constant. c is defined to be the distance from the center of the ellipse to the focus points. Then, $c=\sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}}$. Next, the eccentricity of an ellipse is defined to be the ratio of c to a ,

$$
\begin{equation*}
\text { eccentricity }=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a} \tag{A.8}
\end{equation*}
$$

The relationship between the semi major axis a , the semi minor axis b , and the eccentricity e, can be summarized as follows:

$$
\begin{align*}
& a^{2}=b^{2}+c^{2} \Rightarrow 1=\frac{b^{2}}{a^{2}}+\frac{c^{2}}{a^{2}} \Rightarrow 1=\frac{b^{2}}{a^{2}}+e^{2} \Rightarrow \tag{A.9}\\
& b=a \cdot \sqrt{1-e^{2}}
\end{align*}
$$

APPENDIX B: TRANSFORMATIONS FOR SLANT RANGE AND GROUND RANGE

I. Calculation of ground range from slant range

Given: $\quad R_{S C}=$ Range of spacecraft from center of Earth
$\mathrm{SR}_{\mathrm{X}}=$ Slant Range to image pixel
$\mathrm{RE}_{\mathrm{C}}=$ Earth radius at the center of the image
Calculate: $\mathrm{GR}_{\mathrm{X}} \quad=$ Ground range from nadir point to image pixel
Consider the imaging geometry depicted in Figure D.1. From the law of cosines:

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{x}}^{2}=\mathrm{RE}_{\mathrm{C}}^{2}+\mathrm{R}_{\mathrm{SC}}^{2}-2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}} \cdot \cos \rho \tag{B.1}
\end{equation*}
$$

So that for the central Earth angle ρ,

$$
\begin{equation*}
\cos \rho=\frac{\mathrm{RE}_{\mathrm{C}}^{2}+\mathrm{R}_{\mathrm{SC}}^{2}-\mathrm{SR}_{\mathrm{X}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}}=\frac{1+\frac{\mathrm{R}_{\mathrm{SC}}^{2}}{\mathrm{RE}_{\mathrm{C}}^{2}}-\frac{\mathrm{SR}_{\mathrm{X}}^{2}}{\mathrm{RE}_{\mathrm{C}}^{2}}}{2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}}} \tag{B.2}
\end{equation*}
$$

Let:

$$
\begin{align*}
& \mathrm{a}=\frac{\mathrm{R}_{\mathrm{SC}}-\mathrm{RE}_{\mathrm{C}}}{\mathrm{RE}_{\mathrm{C}}}=\frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}}-1 \\
& \mathrm{x}=1+\mathrm{a}=\frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}} \tag{B.3}\\
& \mathrm{y}=\frac{\mathrm{SR}_{\mathrm{X}}}{\mathrm{RE}_{\mathrm{C}}}
\end{align*}
$$

Then:

$$
\begin{equation*}
\rho=\arccos \left(\frac{1+\mathrm{x}^{2}-\mathrm{y}^{2}}{2 \cdot \mathrm{x}}\right) \tag{B.4}
\end{equation*}
$$

Figure B.1: Range geometry

Now, the ground range from the nadir point to the image pixel, GR_{X}, is $\mathrm{GR}_{\mathrm{x}}=\rho \cdot \mathrm{RE}_{\mathrm{C}}$,
So finally, $\mathrm{GR}_{\mathrm{x}}=\mathrm{RE}_{\mathrm{C}} \cdot \arccos \left(\frac{1+\mathrm{x}^{2}-\mathrm{y}^{2}}{2 \cdot \mathrm{x}}\right)$

II. Calculation of slant range from ground range

Given: $\quad R_{S C}=$ Range of spacecraft from center of Earth

$$
\mathrm{GR}_{\mathrm{X}}=\text { Ground Range to image pixel }
$$

$\mathrm{RE}_{\mathrm{C}}=$ Earth radius at the center of the image
$\rho=$ center Earth angle
Calculate: $\mathrm{SR}_{\mathrm{X}}=$ Slant range to image pixel
Consider the imaging geometry depicted above. From the law of cosines:

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{X}}^{2}=\mathrm{RE}_{\mathrm{C}}^{2}+\mathrm{R}_{\mathrm{SC}}^{2}-2 \cdot \mathrm{R}_{\mathrm{SC}} \cdot \mathrm{RE}_{\mathrm{C}} \cdot \cos \rho \tag{B.6}
\end{equation*}
$$

So that,

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{X}}=\mathrm{RE}_{\mathrm{C}} \cdot \sqrt{1+\frac{\mathrm{R}_{\mathrm{SC}}{ }^{2}}{\mathrm{RE}_{\mathrm{C}}^{2}}-2 \cdot \frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}} \cdot \cos \rho} \tag{B.7}
\end{equation*}
$$

Rearranging, and adding and subtracting the quantity $2 \cdot \frac{R_{S C}}{R E_{C}}$ leads to

$$
\begin{align*}
\mathrm{SR}_{\mathrm{X}} & =\mathrm{RE}_{\mathrm{C}} \cdot \sqrt{2 \cdot \frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}}-2 \cdot \frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}} \cdot \cos \rho+\frac{\mathrm{R}_{\mathrm{SC}}{ }^{2}}{\mathrm{RE}_{\mathrm{C}}{ }^{2}}-2 \cdot \frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}}+1} \\
& =\mathrm{RE}_{\mathrm{C}} \cdot \sqrt{2 \cdot \frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}} \cdot(1-\cos \rho)+\left(\frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}}-1\right)^{2}} \tag{B.8}
\end{align*}
$$

Substituting $\rho=\frac{\mathrm{GR}_{\mathrm{X}}}{\mathrm{RE}_{\mathrm{C}}}$,

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{X}}=\mathrm{RE}_{\mathrm{C}} \cdot \sqrt{2 \cdot \frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}} \cdot\left[1-\cos \left(\frac{\mathrm{GR}_{\mathrm{X}}}{\mathrm{RE}_{\mathrm{C}}}\right)\right]+\left(\frac{\mathrm{R}_{\mathrm{SC}}}{\mathrm{RE}_{\mathrm{C}}}\right)^{2}} \tag{B.9}
\end{equation*}
$$

finally, substituting x and a into the equation,

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{x}}=\mathrm{RE}_{\mathrm{C}} \cdot \sqrt{2 \cdot \mathrm{x} \cdot\left(1-\cos \left(\frac{\mathrm{GR}_{\mathrm{X}}}{\mathrm{RE}_{\mathrm{C}}}\right)+\mathrm{a}^{2}\right.} \tag{B.10}
\end{equation*}
$$

III. Calculation of slant range to center pixel from ground range

Let G be the ground range from the near edge of the swath to the image center pixel.
Calculate GR_{0}, the ground range from the nadir to the start of the swath using the method in section I, where $S R_{X}$ is replaced with the slant range to the first pixel.

Calculate GR_{X}, the ground range to the center of the image swath as $\mathrm{GR}_{0}+\mathrm{G}$.
Calculate SR_{X}, the slant range to the center of the image swath using the method in section II.

IV. Calculation of swath width using slant ranges

Calculate rg0, the ground range to the near edge of the swath using the method in section I , where SR_{X} is replaced with the slant range to the first pixel, SR_{F}.

Calculate GR_{1}, the ground range to the far edge of the swath using the method in section I , where SR_{X} is replaced with the slant range to the last pixel, SR_{L}.

Then, the swath width in ground range is simply $\mathrm{GR}_{1}-\mathrm{GR}_{0}$.

APPENDIX C: EARTH LATITUDES AND COORDINATE SYSTEMS

I. Geodetic and geocentric latitudes

Using an ellipsoid model complicates the calculation of the latitude for a point. Two commonly used definitions of latitude are displayed in Figure E.1. The first θ_{C}, is called the geocentric latitude and is defined to be the angle between the equatorial plane and the radius from the geocenter. The second θ_{D}, is the geodetic latitude and is defined to be the angle between the equatorial plane and the normal to the surface of the ellipsoid. In order to derive equations for the geodetic and geocentric latitudes, another type of latitude, the reduced latitude β, is defined. Using β, the coordinates for x can be written as

$$
\begin{equation*}
x=R E \cdot \cos \beta \tag{C.1}
\end{equation*}
$$

Figure C.1: Geocentric and geodetic latitude

In order to solve for the z coordinate on the ellipsoid, note that the x -coordinates are the same and use the definitions of an ellipse and a circle to establish the relationship between z^{\prime}, the point on the circumscribed circle, and z, the point on the ellipse. Given the equatorial Earth radius RE and the polar Earth radius RP, it is

$$
\begin{align*}
& \frac{\mathrm{x}^{2}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}^{2}}{\mathrm{RP}^{2}}=1 \quad \text { [definition of an ellipse] } \tag{C.2}\\
& \Rightarrow \mathrm{x}^{2} \cdot \mathrm{RP}^{2}+\mathrm{z}^{2} \cdot \mathrm{RE}^{2}=\mathrm{RE}^{2} \cdot \mathrm{RP}^{2}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{x}^{2}+\mathrm{z}^{\prime 2}=\mathrm{RE}^{2} \quad \text { [definition of a circle] } \tag{C.3}\\
& \Rightarrow \quad \mathrm{x}^{2}=\mathrm{RE}^{2}-\mathrm{z}^{\prime 2}
\end{align*}
$$

substituting equation E. 3 into equation E.2, leads to

$$
\begin{align*}
\left(\mathrm{RE}^{2}-\mathrm{z}^{\prime 2}\right) \cdot \mathrm{RP}^{2}+\mathrm{z}^{2} \cdot \mathrm{RE}^{2} & =\mathrm{RE}^{2} \cdot \mathrm{RP}^{2} \\
\left(\mathrm{RE}^{2} \cdot \mathrm{RP}^{2}-\mathrm{z}^{\prime 2} \cdot \mathrm{RP}^{2}+\mathrm{z}^{2} \cdot \mathrm{RE}^{2}\right. & =\mathrm{RE}^{2} \cdot \mathrm{RP}^{2} \\
\mathrm{z}^{2} \cdot \mathrm{RE}^{2} & =\mathrm{z}^{\prime 2} \cdot \mathrm{RP}^{2} \tag{C.4}\\
\mathrm{z} \cdot \mathrm{RE} & =\mathrm{z}^{\prime} \cdot \mathrm{RP} \\
\mathrm{z} & =\frac{\mathrm{RP}}{\mathrm{RE}} \cdot \mathrm{z}^{\prime}
\end{align*}
$$

now, $z^{\prime}=R E \cdot \sin \beta$, so finally,

$$
\begin{equation*}
\mathrm{z}=\frac{\mathrm{RP}}{\mathrm{RE}} \cdot \mathrm{RE} \cdot \sin \beta \tag{C.5}
\end{equation*}
$$

Figure C.2: Reduced and geodetic latitude
using the definition of the (squared) eccentricity of an ellipse ECC2, $\mathrm{RP}=\mathrm{RE} \cdot \sqrt{1-\mathrm{ECC} 2}$, so that

$$
\begin{equation*}
\mathrm{z}=\mathrm{RE} \cdot \sqrt{1-\mathrm{ECC} 2} \cdot \sin \beta \tag{C.6}
\end{equation*}
$$

From calculus it is known that the slope of the tangent to the ellipse is $\frac{d z}{d x}$ and the slope of the normal is $-\frac{d x}{d z}$. Since the slope of the normal is just defined as $\tan \theta_{D}$

$$
\begin{equation*}
\tan \theta_{\mathrm{D}}=-\frac{\mathrm{dx}}{\mathrm{dz}} \tag{C.7}
\end{equation*}
$$

The differentials dx and dz are obtained by differentiating the expressions for x and z . Thus

$$
\begin{align*}
& \mathrm{dx}=-\mathrm{RE} \cdot \sin \beta \cdot \mathrm{~d} \beta \\
& \mathrm{dy}=\mathrm{RE} \cdot \sqrt{1-\mathrm{ECC} 2} \cdot \cos \beta \cdot \mathrm{~d} \beta \tag{C.8}
\end{align*}
$$

so that
or

$$
\tan \theta_{D}=\frac{\tan \beta}{\sqrt{1-E C C 2}}
$$

$$
\begin{equation*}
\tan \beta=\sqrt{1-\mathrm{ECC} 2} \cdot \tan \theta_{\mathrm{D}}=\sqrt{1-\mathrm{ECC} 2} \cdot \frac{\sin \theta_{\mathrm{D}}}{\cos \theta_{\mathrm{D}}} \tag{C.9}
\end{equation*}
$$

this is the quotient,

$$
\begin{equation*}
\tan \beta=\frac{A}{B} \text {, where } A=\sqrt{1-E C C 2} \cdot \sin \theta_{D} \text { and } B=\cos \theta_{D} \tag{C.10}
\end{equation*}
$$

then,

$$
\begin{align*}
& \sin \beta=\frac{\mathrm{A}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}=\frac{\sqrt{1-\mathrm{ECC} 2} \cdot \sin \theta_{\mathrm{D}}}{\sqrt{1-\mathrm{e}^{2} \cdot \sin ^{2} \theta_{\mathrm{D}}}} \tag{C.11}\\
& \cos \beta=\frac{\mathrm{B}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}}}=\frac{\cos \theta_{\mathrm{D}}}{\sqrt{1-\mathrm{e}^{2} \cdot \sin ^{2} \theta_{\mathrm{D}}}}
\end{align*}
$$

finally then, the x and z coordinates for a point on the ellipse can be written as

$$
\begin{align*}
& x=\frac{\mathrm{RE} \cdot \cos \theta_{\mathrm{D}}}{\sqrt{1-\mathrm{e} 2 \cdot \sin ^{2} \theta_{\mathrm{D}}}} \\
& \mathrm{z}=\frac{\mathrm{RE} \cdot \sqrt{1-\mathrm{ECC} 2} \cdot \sqrt{1-\mathrm{ECC} 2} \cdot \sin \theta_{\mathrm{D}}}{\sqrt{1-\mathrm{e}^{2} \cdot \sin ^{2} \theta_{\mathrm{D}}}} \tag{C.12}
\end{align*}
$$

Using similar methods, the equation for the y coordinate can be derived as well. The final conversion from geodetic coordinates to cartesian are thus:

$$
\begin{align*}
\mathrm{R} & =\frac{\mathrm{RE}}{\sqrt{1-(\mathrm{ECC} \cdot \sin \text { lat_d })^{2}}} \\
\mathrm{x} & =\mathrm{R} \cdot \cos \text { lon } \cdot \cos \text { lat_d } \tag{C.13}\\
\mathrm{y} & =\mathrm{R} \cdot \sin \text { lon } \cdot \cos \text { lat_d } \\
\mathrm{z} & =\mathrm{R} \cdot(1-\mathrm{ECC} 2) \cdot \sin \text { lat_d }
\end{align*}
$$

The relationship between the geocentric and geodetic latitudes can be determined in the following way. Let z^{\prime} be the coordinate on the sphere and z be the coordinate on the ellipse. It is given that $z=\frac{R P}{R E} \cdot z^{\prime}$. Then,

$$
\begin{align*}
\tan \beta & =\frac{z^{\prime}}{x} \Rightarrow z^{\prime}=x \cdot \tan \beta \Rightarrow z=\frac{R P}{R E} \cdot x \cdot \tan \beta \tag{C.14}\\
\tan \theta_{C} & =\frac{z}{x} \Rightarrow z=x \cdot \tan \theta_{C}
\end{align*}
$$

thus,

$$
\begin{equation*}
\tan \theta_{\mathrm{C}}=\frac{\mathrm{RP}}{\mathrm{RE}} \cdot \tan \beta \tag{C.15}
\end{equation*}
$$

also,

$$
\begin{equation*}
\tan \beta=\sqrt{1-\mathrm{ECC} 2} \cdot \tan \theta_{\mathrm{D}} \tag{C.16}
\end{equation*}
$$

so that,

$$
\begin{equation*}
\tan \theta_{\mathrm{C}}=\frac{\mathrm{RP}}{\mathrm{RE}} \cdot \sqrt{1-\mathrm{ECC} 2} \cdot \tan \theta_{\mathrm{D}} \tag{C.17}
\end{equation*}
$$

now, $\sqrt{1-\mathrm{ECC} 2}=\frac{\mathrm{RP}}{\mathrm{RE}}$, that can be transformed to

$$
\tan \theta_{\mathrm{C}}=(1-\mathrm{ECC} 2) \cdot \tan \theta_{\mathrm{D}}
$$

or

$$
\begin{equation*}
\tan \theta_{\mathrm{C}}=\left(\frac{\mathrm{RP}}{\mathrm{RE}}\right)^{2} \cdot \tan \theta_{\mathrm{D}} \tag{C.18}
\end{equation*}
$$

Figure C.3: Reduced and geocentric latitude

Finally then, given a cartesian vector, $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$, can be transformed into ellipsoidal coordinates with a geodetic latitude using the following:

$$
\begin{align*}
r & =\operatorname{mag}(x, y, z) \\
\theta_{C} & =\arcsin \left(\frac{z}{r}\right) \\
\theta_{D} & =\arctan \left(\frac{\tan \theta_{C}}{1-E C C 2}\right) \tag{C.19}\\
\text { lon } & =\arctan \left(\frac{y}{x}\right)
\end{align*}
$$

II. Earth radius

Given a point $P=\{x, y, z\}$, the equatorial Earth radius RE and the polar Earth radius RP, where P lies on the surface of the Earth if the following holds true:

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{R E^{2}}+\frac{z^{2}}{R P^{2}}=1 \tag{C.20}
\end{equation*}
$$

Given a geocentric latitude θ_{C}, the radius of the Earth can be calculated by

$$
\begin{equation*}
\text { Radius }=\frac{\mathrm{RE} \cdot \mathrm{RP}}{\sqrt{\left(\mathrm{RP} \cdot \cos \theta_{\mathrm{C}}\right)^{2}+\left(\mathrm{RE} \cdot \sin \theta_{\mathrm{C}}\right)^{2}}} \tag{C.21}
\end{equation*}
$$

Given a geodetic latitude θ_{D}, the radius of the Earth can be calculated by

$$
\theta_{\mathrm{C}}=\arctan \left(\tan \theta_{\mathrm{d}} \cdot(1-\mathrm{ECC} 2)\right)
$$

$$
\begin{equation*}
\text { Radius }=\frac{\mathrm{RE} \cdot \mathrm{RP}}{\sqrt{\left(\mathrm{RP} \cdot \cos \theta_{\mathrm{C}}\right)^{2}+\left(\mathrm{RE} \cdot \sin \theta_{\mathrm{C}}\right)^{2}}} \tag{C.22}
\end{equation*}
$$

III. Earth coordinate systems

Earth Body Fixed Coordinates (EBF)

The EBF coordinate system is set up such that the x -axis passes through the equator at the Greenwich Meridian, the zaxis passes through the Earth's rotation axis, and the y-axis completes the right-hand rectangular system. Since the x-axis passes through the Greenwich meridian, this coordinate system rotates with the Earth. Thus, it is fixed to the body of the Earth. So, a given location on the surface of the Earth will always have the same location using EBF coordinates.

Figure C.4:
Earth coordinate systems

Geocentric Equatorial Inertial Coordinates (GEI)

The GEI coordinate system, similar to EBF, has the z-axis passing through the Earth's rotation axis. However, the x -axis points in the direction of the vernal equinox, which is generally in the direction of the constellation Aries. The y-axis completes the right-hand system. Since the x -axis points in a constant direction, this coordinate system does not rotate with the Earth. This means a fixed point on the Earth will have continuously changing GEI coordinates with a velocity $\overrightarrow{\mathrm{V}}_{\mathrm{T}}$ of

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{T}}=\vec{\omega}_{\mathrm{E}} \times \overrightarrow{\mathrm{R}}_{\mathrm{T}} \tag{C.23}
\end{equation*}
$$

where $\vec{\omega}_{\mathrm{E}}$ is the vector $\left(0,0, \omega_{\mathrm{E}}\right)$ and $\overrightarrow{\mathrm{R}}_{\mathrm{T}}$ is the GEI vector of the target point.

Coordinate Transformations

Transformation between these coordinate systems relies on knowing how far the Greenwich meridian is from the vernal equinox position at any given moment in time. This quantity, called the Greenwich hour angle, must be known in order to rotate from GEI to EBF or from EBF to GEI coordinates.

GEI to EBF:

Given a GEI state vector position, $\overrightarrow{\mathrm{P}}_{\mathrm{GEI}}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$, a GEI state vector velocity, $\overrightarrow{\mathrm{V}}_{\mathrm{GEI}}=(\mathrm{vx}, \mathrm{vy}, \mathrm{vz})$, and the Greenwich hour angle, gha, in radians, the EBF coordinates, $\overrightarrow{\mathrm{P}}_{\text {EbF }}$ and $\overrightarrow{\mathrm{V}}_{\mathrm{EBF}}$, can be calculated as follows:

Position:

Let

$$
\begin{array}{rlrl}
r & =\sqrt{x^{2}+y^{2}} & \begin{array}{l}
\text { \{magnitude of } x, y \\
\text { position }\}
\end{array} \\
\operatorname{lon} & =\arctan \left(\frac{y}{x}\right) & & \{\text { longitude of position }\} \tag{C.24}
\end{array}
$$

Compute,

$$
\begin{align*}
\text { lon } & =\operatorname{lon}-\mathrm{gha} & & \text { \{subtract the gha from the longitude }\} \\
\mathrm{x}^{\prime} & =\cos \operatorname{lon} \cdot \mathrm{r} & & \text { \{recompute } \mathrm{x} \text { position }\} \tag{C.25}\\
\mathrm{y}^{\prime} & =\sin \operatorname{lon} \cdot \mathrm{r} & & \{\text { recompute } y \text { position }\} \\
\mathrm{z}^{\prime} & =\mathrm{z} & & \{\mathrm{z} \text { position does not change }\}
\end{align*}
$$

then,

$$
\begin{equation*}
\overrightarrow{\mathrm{P}}_{\mathrm{EBF}}=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right) \tag{C.26}
\end{equation*}
$$

Velocity:

Let

$$
\begin{array}{ll}
r=\sqrt{v x^{2}+v y^{2}} & \text { \{magnitude of } x, y \text { velocity }\} \\
\text { lon }=\arctan \left(\frac{v y}{v x}\right) & \{\text { longitude of velocity }\} \tag{C.27}
\end{array}
$$

Compute,

$$
\begin{array}{ll}
\text { lon }=\operatorname{lon}-\mathrm{gha} & \text { \{subtract the gha to the longitude }\} \\
\mathrm{vx}^{\prime}=\cos \operatorname{lon} \cdot \mathrm{r}+\omega_{\mathrm{E}} \cdot \mathrm{y}^{\prime} & \text { \{recompute } \mathrm{x} \text { velocity including Earth spin }\} \tag{C.28}\\
\mathrm{vy}^{\prime}=\sin \operatorname{lon} \cdot \mathrm{r}-\omega_{\mathrm{E}} \cdot \mathrm{x}^{\prime} & \\
\text { vzecompute } \mathrm{y} \text { velocity including Earth spin }\}^{\mathrm{vz}} & \{\mathrm{z} \text { velocity does not change }\}
\end{array}
$$

then,

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\text {EBF }}=\left(\mathrm{vx}^{\prime}, \mathrm{vy}^{\prime}, \mathrm{vz}^{\prime}\right) \tag{C.29}
\end{equation*}
$$

EBF to GEI:
Given an EBF state vector position, $\overrightarrow{\mathrm{P}}_{\mathrm{EBF}}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$, an EBF state vector velocity, $\overrightarrow{\mathrm{V}}_{\text {EbF }}=(\mathrm{vx}, \mathrm{vy}, \mathrm{vz})$, and the Greenwich hour angle, gha, in radians, the GEI coordinates, $\overrightarrow{\mathrm{P}}_{\mathrm{GEI}}$ and $\overrightarrow{\mathrm{V}}_{\mathrm{GEI}}$, can be calculated as follows:

Position:

Let

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}} & & \text { \{magnitude of } x, y \text { position }\} \\
\text { lon } & =\arctan \left(\frac{y}{x}\right) & & \text { \{longitude of position }\} \tag{C.30}
\end{align*}
$$

Compute,

$$
\begin{array}{ll}
\text { lon }=\operatorname{lon}+\mathrm{gha} & \text { \{add the gha from the longitude }\} \\
\mathrm{vx}=\cos \operatorname{lon} \cdot \mathrm{r}+\omega_{\mathrm{E}} \cdot \mathrm{y}^{\prime} & \{\text { recompute } \mathrm{x} \text { position }\} \tag{C.31}\\
\mathrm{vy}^{\prime}=\sin \operatorname{lon} \cdot \mathrm{r}-\omega_{\mathrm{E}} \cdot \mathrm{x}^{\prime} & \{\text { recompute } \mathrm{y} \text { position }\} \\
\mathrm{vz}^{\prime}=\mathrm{vz} & \{\mathrm{z} \text { position does not change }\}
\end{array}
$$

then,

$$
\begin{equation*}
\overrightarrow{\mathrm{P}}_{\mathrm{GEI}}=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\right) \tag{C.32}
\end{equation*}
$$

Velocity:

Let

$$
\begin{array}{ll}
r=\sqrt{v x^{2}+v y^{2}} & \text { \{magnitude of } x, y \text { velocity }\} \\
\text { lon }=\arctan \left(\frac{v y}{v x}\right) & \{\text { longitude of velocity }\} \tag{C.33}
\end{array}
$$

Compute,

$$
\begin{array}{ll}
\text { lon }=\operatorname{lon}+\mathrm{gha} & \\
\mathrm{vx}^{\prime}=\cos \operatorname{lon} \cdot \mathrm{r}-\omega_{\mathrm{E}} \cdot \mathrm{y}^{\prime} & \\
\text { \{recompute the velocity including Earth spin }\} \\
\mathrm{vy}^{\prime}=\sin \operatorname{lon} \cdot \mathrm{r}+\omega_{\mathrm{E}} \cdot \mathrm{x}^{\prime} & \\
\text { \{recompute } \mathrm{y} \text { velocity including Earth spin }\}^{\mathrm{vz}^{\prime}=\mathrm{vz}} \begin{array}{ll}
\text { \{ velocity does not change }\}
\end{array}
\end{array}
$$

then,

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{GEI}}=\left(\mathrm{vx}^{\prime}, \mathrm{vy}^{\prime}, \mathrm{vz}^{\prime}\right) \tag{C.35}
\end{equation*}
$$

APPENDIX D: GEOLOCATION ALGORITHM

```
Given: actual Doppler frequency shift, \(\mathrm{fd}_{0}\) actual slant range, \(\mathrm{sr}_{0}\)
spacecraft position vector, \(\overrightarrow{\mathrm{R}}_{\text {sc }}\) spacecraft velocity vector, \(\overrightarrow{\mathrm{V}}_{\text {SC }}\)
```

Calculate: Target geolocation (lat, lon)
Look Angle, θ
Incidence Angle, φ
Yaw Angle, ϕ
Procedure:

$$
\begin{aligned}
& \mathrm{fd}=-999999 \\
& \mathrm{sr}=-999999 \\
& \phi=0.0 \\
& \theta=20.0 \\
& \text { While }\left(\left|f d-\mathrm{fd}_{0}\right|>0.01 \text { or }\left|\mathrm{sr}-\mathrm{sr}_{0}\right|>0.01 \mid\right) \\
& \text { \{ } \\
& \text { calculate pointing vector, } \overrightarrow{\mathrm{P}} \\
& \text { calculate target position, } \overrightarrow{\mathrm{R}}_{\mathrm{T}} \\
& \text { convert target position to lat, lon } \\
& \text { calculate target velocity, } \overrightarrow{\mathrm{V}}_{\mathrm{T}} \\
& \text { calculate incidence angle, } \varphi \\
& \text { calculate Doppler frequency shift, fd } \\
& \mathrm{sr}=\operatorname{mag}\left(\operatorname{diff}\left(\overrightarrow{\mathrm{R}}_{\mathrm{SC}}, \overrightarrow{\mathrm{R}}_{\mathrm{T}}\right)\right) \\
& \operatorname{vel}=\operatorname{mag}\left(\operatorname{diff}\left(\overrightarrow{\mathrm{V}}_{\mathrm{SC}}, \overrightarrow{\mathrm{~V}}_{\mathrm{T}}\right)\right) \\
& \theta=\theta+\arctan \left(\frac{\mathrm{sr}_{0}-\mathrm{sr}}{\tan \varphi \cdot \mathrm{sr}}\right) \\
& \phi=\phi-\arcsin \left(\lambda \cdot \frac{\mathrm{fd}_{0}-\mathrm{fd}}{2 \cdot \mathrm{vel}}\right) \\
& \text { \} }
\end{aligned}
$$

Notes: Curlander (1991) states, $\mathrm{f}_{\mathrm{D}}=2 \cdot \frac{\mathrm{~V}_{\mathrm{R}} \cdot \sin \phi}{\lambda}$, where V_{R} is the relative velocity of the target and platform. From this equation for the yaw angle ϕ, used above, can be determined.

To understand the update equation for θ, the following relation is used (let $\Delta \mathrm{sr}=\mathrm{sr} 0-\mathrm{sr})$.

$$
\begin{align*}
\tan \varphi & =\frac{\Delta \mathrm{sr}}{\Delta \mathrm{~L}} \Rightarrow \Delta \mathrm{~L}=\frac{\Delta \mathrm{sr}}{\tan \varphi} \\
\tan \Delta \varphi & =\frac{\Delta \mathrm{L}}{\mathrm{sr}}=\frac{\Delta \mathrm{sr}}{\tan \varphi \cdot \mathrm{sr}} \Rightarrow \Delta \theta=\arctan \left(\frac{\Delta \mathrm{sr}}{\tan \varphi \cdot \mathrm{sr}}\right) \tag{D.1}
\end{align*}
$$

Figure D.1: Look angle update $\left(\Delta_{\theta}\right)$

I. Calculate pointing vector for the spacecraft

Given: \quad Spacecraft Position Vector, $\overrightarrow{\mathrm{R}}_{\mathrm{sc}}=\{\mathrm{xs}, \mathrm{ys}, \mathrm{zs}\}$
Spacecraft Velocity Vector, $\overrightarrow{\mathrm{V}}_{\mathrm{sc}}=\{\mathrm{xv}, \mathrm{yv}, \mathrm{zv}\}$
Look Angle, θ
Yaw Angle, ϕ
Calculate: Pointing Vector, $\overrightarrow{\mathrm{P}}$, for the Spacecraft

Let

$$
\begin{align*}
\overrightarrow{\mathrm{u}} & =\operatorname{normalize}\left(\overrightarrow{\mathrm{V}}_{\mathrm{SC}} \times \overrightarrow{\mathrm{R}}_{\mathrm{SC}}\right) \\
\overrightarrow{\mathrm{v}} & =\operatorname{normalize}\left(\overrightarrow{\mathrm{R}}_{\mathrm{SC}} \times \overrightarrow{\mathrm{u}}\right) \tag{D.2}\\
\overrightarrow{\mathrm{w}} & =-1 \cdot \operatorname{normalize}\left(\overrightarrow{\mathrm{R}}_{\mathrm{SC}}\right)
\end{align*}
$$

Then, $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}$ defines a coordinate system centered at the spacecraft, with $\overrightarrow{\mathrm{v}}$ pointing in the direction of spacecraft flight, $\overrightarrow{\mathrm{w}}$ pointing toward the center of the Earth, and $\overrightarrow{\mathrm{u}}$ pointing directly to the right of the spacecraft. Using $\vec{u}, \vec{v}, \vec{w}$ as a basis, we can define a vector pointing at the look angle off of \vec{w} and the yaw angle off of \vec{u}, by

$$
\begin{align*}
& P_{x}=w_{x} \cdot \cos \theta+\left(u_{x} \cdot \cos \phi-v_{x} \cdot \sin \phi\right) \cdot \sin \theta \\
& P_{y}=w_{x} \cdot \cos \theta+\left(u_{y} \cdot \cos \phi-v_{y} \cdot \sin \phi\right) \cdot \sin \theta \tag{D.3}\\
& P_{z}=w_{x} \cdot \cos \theta+\left(u_{z} \cdot \cos \phi-v_{z} \cdot \sin \phi\right) \cdot \sin \theta
\end{align*}
$$

Figure D.2: Point vector for the spacecraft

II. Calculate target position

Given: Spacecraft Position Vector, $\overrightarrow{\mathrm{R}}_{\text {SC }}=\left\{\mathrm{x}_{\mathrm{S}}, \mathrm{y}_{\mathrm{S}}, \mathrm{z}_{\mathrm{S}}\right\}$
Spacecraft Pointing Vector, $\overrightarrow{\mathrm{P}}=\left\{\mathrm{x}_{\mathrm{P}}, \mathrm{y}_{\mathrm{P}}, \mathrm{Z}_{\mathrm{P}}\right\}$

Calculate: Target Vector, $\overrightarrow{\mathrm{R}}_{\mathrm{T}}$, pointing from the center of the Earth to the exact surface

The vector $\vec{R}=\left\{\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}, \mathrm{Z}_{\mathrm{T}}\right\}$ needs to be determined, such that $\overrightarrow{\mathrm{R}}_{\mathrm{T}}$ coincides with the surface of the Earth and $\overrightarrow{\mathrm{R}}_{\mathrm{T}}$ is a linear combination of the spacecraft vector and the pointing vector (i.e. $\overrightarrow{\mathrm{R}}_{\mathrm{T}}=\overrightarrow{\mathrm{R}}_{\mathrm{SC}}+\beta \cdot \overrightarrow{\mathrm{P}}$) as depicted in Figure F.2. Using the second condition to define $\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}$, and z_{T}, and then plugging this into the first condition, leads to

$$
\begin{equation*}
\frac{\left(x_{\mathrm{S}}+\beta \cdot \mathrm{x}_{\mathrm{P}}\right)^{2}+\left(\mathrm{y}_{\mathrm{S}}+\beta \cdot \mathrm{y}_{\mathrm{P}}\right)^{2}}{\mathrm{RE}^{2}}+\frac{\left(\mathrm{z}_{\mathrm{S}}+\beta \cdot \mathrm{z}_{\mathrm{P}}\right)^{2}}{\mathrm{RP}^{2}}=1 \tag{D.4}
\end{equation*}
$$

Figure D.3: Target position vector
expanding and rearranging

$$
\begin{equation*}
\underbrace{\left(\frac{\mathrm{x}_{\mathrm{P}}^{2}+\mathrm{y}_{\mathrm{P}}^{2}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}_{\mathrm{P}}^{2}}{\mathrm{RP}^{2}}\right)}_{\mathrm{A}} \cdot \beta^{2}+2 \cdot \underbrace{\left(\frac{\mathrm{x}_{\mathrm{P}} \cdot \mathrm{x}_{\mathrm{S}}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}_{\mathrm{P}} \cdot \mathrm{z}_{\mathrm{S}}}{\mathrm{RP}^{2}}\right)}_{\mathrm{B}} \cdot \beta+\underbrace{\left(\frac{\mathrm{x}_{\mathrm{S}}{ }^{2}+\mathrm{y}_{\mathrm{S}}^{2}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}_{\mathrm{S}}^{2}}{\mathrm{RP}^{2}}-1\right)}_{\mathrm{C}}=0 \tag{D.5}
\end{equation*}
$$

We can now solve for β using the quadratic formula and calculate \vec{R}_{T}, the target vector

$$
\begin{align*}
& \mathrm{A}=\frac{\mathrm{x}_{\mathrm{P}}{ }^{2}+\mathrm{y}_{\mathrm{P}}{ }^{2}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}_{\mathrm{P}}{ }^{2}}{\mathrm{RP}^{2}}, \quad \mathrm{~B}=2 \cdot\left(\frac{\mathrm{x}_{\mathrm{P}} \cdot x_{\mathrm{S}}+\mathrm{y}_{\mathrm{P}} \cdot y_{\mathrm{S}}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}_{\mathrm{P}} \cdot \mathrm{z}_{\mathrm{S}}}{\mathrm{RP}^{2}}\right) \tag{D.6}\\
& \mathrm{C}=\frac{\mathrm{x}_{\mathrm{S}}{ }^{2}+\mathrm{y}_{\mathrm{S}}{ }^{2}}{\mathrm{RE}^{2}}+\frac{\mathrm{z}_{\mathrm{S}}{ }^{2}}{\mathrm{RP}^{2}}-1 \\
& \beta=\frac{-\mathrm{B}-\sqrt{\mathrm{B}^{2}-4 \cdot \mathrm{~A} \cdot \mathrm{C}}}{2 \cdot \mathrm{~A}} \tag{D.7}
\end{align*}
$$

finally then,

$$
\begin{equation*}
\overrightarrow{\mathrm{R}}_{\mathrm{T}}=\overrightarrow{\mathrm{R}}_{\mathrm{sc}}+\beta \cdot \overrightarrow{\mathrm{P}}^{2} \tag{D.8}
\end{equation*}
$$

III. Conversion to lat, lon

Given: Target Vector
Calculate: Longitude, geocentric latitude, geodetic latitude
This is done exactly by the formulas developed for this in Appendix C.

IV. Calculate target velocity

Given: Target geodetic latitude and longitude
Calculate: Velocity of the target position, $\overrightarrow{\mathrm{V}}_{\mathrm{T}}$, due to Earth's spin
Let $\vec{R}_{T}=\left\{\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}, \mathrm{z}_{\mathrm{T}}\right\}$ be the cartesian coordinates for the target position (derived using the formulas developed to convert geodetic lat, lon to cartesian)

Note that $\sqrt{\mathrm{x}_{\mathrm{T}}{ }^{2}+\mathrm{y}_{\mathrm{T}}{ }^{2}}$ is the radius from the z -axis (Earth's rotational axis) to the surface of the Earth. Then, $\mathrm{r}_{\mathrm{X}}=\omega_{\mathrm{E}} \cdot \sqrt{\mathrm{x}_{\mathrm{T}}{ }^{2}+\mathrm{y}_{\mathrm{T}}{ }^{2}}$ is the magnitude of the velocity of the Earth's spin at the target point, with the Earth rotation ω_{E}.

Let $\overrightarrow{\mathrm{V}}=$ normalize $\left(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{R}}_{\mathrm{T}}\right)$, where $\overrightarrow{\mathrm{K}}=\{0,0,1\}$ is the unit vector in the z-direction. Then, $\overrightarrow{\mathrm{V}}$, which is tangent to the surface of the Earth and perpendicular to the z-axis, points in the direction of the Earth's spin.

Then, $\overrightarrow{\mathrm{V}}_{\mathrm{T}}$, the target point's velocity is given by

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{T}}=\mathrm{r}_{\mathrm{X}} \cdot \overrightarrow{\mathrm{~V}} \tag{D.9}
\end{equation*}
$$

Note: $\overrightarrow{\mathrm{V}}_{\mathrm{T}}=\left\{0,0, \omega_{\mathrm{E}}\right) \times \overrightarrow{\mathrm{R}}_{\mathrm{T}}$ gives the same result as above

V. Calculate incidence angle

Given: \quad Target Vector, $\overrightarrow{\mathrm{R}}_{\mathrm{T}}=\left\{\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}, \mathrm{z}_{\mathrm{T}}\right\}$

Spacecraft Vector, $\overrightarrow{\mathrm{R}}_{\mathrm{SC}}=\left\{\mathrm{x}_{\mathrm{s}}, \mathrm{y}_{\mathrm{S}}, \mathrm{z}_{\mathrm{S}}\right\}$

Look Angle, θ
Calculate: Incidence Angle, φ

$$
\begin{align*}
& r_{S}=\operatorname{mag}\left(\overrightarrow{\mathrm{R}}_{\mathrm{T}}\right) \\
& \mathrm{r}_{\mathrm{T}}=\operatorname{mag}\left(\overrightarrow{\mathrm{R}}_{\mathrm{SC}}\right) \\
& \text { lat }=\arctan \left(\frac{\mathrm{z}_{\mathrm{T}}}{\sqrt{\mathrm{x}_{\mathrm{T}}{ }^{2}+\mathrm{y}_{\mathrm{T}}^{2}}}\right) \tag{D.10}\\
& \text { lat_d }=\arctan \left(\frac{\tan \text { lat }}{1-\mathrm{ECC} 2}\right) \\
& \mathrm{dlat}=\text { lat_d }- \text { lat } \\
& \arcsin \left(\frac{\mathrm{r}_{\mathrm{S}}}{\mathrm{r}_{\mathrm{T}}} \cdot \sin \theta\right)-\mathrm{dlat} \tag{D.11}
\end{align*}
$$

Figure D.4: Incidence angle

VI. Calculate Doppler frequency

Given: \quad Spacecraft Position Vector, $\vec{R}_{\text {SC }}$ Spacecraft Velocity Vector, $\overrightarrow{\mathrm{V}}_{\text {SC }}$
Target Position Vector, $\overrightarrow{\mathrm{R}}_{\mathrm{T}}$
Target Velocity Vector, $\overrightarrow{\mathrm{V}}_{\mathrm{T}}$

Calculate: Doppler frequency shift f_{D}, induced by relative velocities of spacecraft and target

Define,

$$
\begin{align*}
\overrightarrow{\mathrm{R}} & =\overrightarrow{\mathrm{R}}_{\mathrm{T}}-\overrightarrow{\mathrm{R}}_{\mathrm{SC}} \\
\overrightarrow{\mathrm{~V}}_{\mathrm{R}} & =\overrightarrow{\mathrm{V}}_{\mathrm{T}}-\overrightarrow{\mathrm{V}}_{\mathrm{SC}} \tag{D.12}\\
\mathrm{R} & =|\overrightarrow{\mathrm{R}}|
\end{align*}
$$

Then, the Doppler frequency shift is given by

$$
\begin{equation*}
\mathrm{f}_{\mathrm{D}}=\frac{-2.0}{\lambda \cdot \mathrm{R}} \cdot\left(\overrightarrow{\mathrm{R}} \bullet \overrightarrow{\mathrm{~V}}_{\mathrm{R}}\right) \tag{D.13}
\end{equation*}
$$

Figure D.5: Geometry for Doppler frequency calculations
(See Olmsted (1993), p. 19, for derivation of this equation for f_{D})
Aside: For the relative acceleration from target to spacecraft we have, $\vec{A}_{R}=\vec{A}_{T}-\overrightarrow{\mathrm{A}}_{\mathrm{Sc}}$.
Then the Doppler rate is given by $f_{D D}=\frac{-2.0}{\lambda \cdot R} \cdot\left|\overrightarrow{\mathrm{~V}}_{\mathrm{R}}{ }^{2}-\overrightarrow{\mathrm{R}} \bullet \overrightarrow{\mathrm{A}}_{\mathrm{R}}\right|$.

APPENDIX E: ASF IMAGE ORIENTATIONS

In normal imaging modes, ERS-1, ERS-2, JERS-1, and RadarSAT-1 are all right looking SAR platforms in polar orbits. The imaging orientations are thus fixed for ascending and descending scenes as depicted in the figure below.

Figure G.1: Ascending and descending orbits

For convenience sake, ASF orients its image products such that only rotations are required when geocoding images. This requires some image manipulation. It turns out that a single flip in the azimuth direction is enough to satisfy this requirement. One can think of it as leaving the range direction's time as increasing, while reversing the azimuthal time direction to decreasing. In this case, image orientations as follows:

	Time direction	
	Descending	Ascending
Range	Increase	Increase
Azimuth	Decrease	Decrease

Table G.1: Time direction

Figure G.2: Time directions for ascending and descending orbits

As an orbiting platform passes by the poles, the type of orbit (ascending or descending) changes, as do image orientations. Consider the cases above. For the South pole, as the platform passes from point 1 to point 2, the spacecraft heading goes from South to West to North. For the North Pole, it goes from North to West to South. Thus, images at the top and bottoms of orbits will have West at the start of the image frame in these areas.

INDEX

Ascending orbits 71-72
Attitude data record. 24
Azimuth data spacing 40
Cartesian coordinates 48
Center line 27
Center pixel 27
Central incidence angle 38-39
Central Look angle 37-38
CEOS records 15-16
Attitude data record 24
Data set summary record 23, 24, 25
Facility related data record 24, 25, 26
Platform position data record. 24
Constants
Radarsat imaging modes 18-19
SAR sensor parameters 19-20
Data interval 32
Data set summary record 23, 24, 25
Descending orbits 71-72
Doppler frequency 32-33, 68-69
Earth Body Fixed coordinates 62
Earth coordinate systems
Earth Body Fixed coordinates. 60-62
Geocentric Equatorial Inertial coordinates. 60-62
Earth radius at image center 36-37
Earth radius at nadir 34
Eccentricity 49
Facility related data record. 24, 25, 26
Geocentric Equatorial Inertial coordinates62 55-59Geocentric latitude
Geocentric nadir 34
Geocentric spacecraft altitude 35
Geodetic latitude 55-59
Geodetic nadir 34
Geodetic spacecraft altitude 35
Greenwich hour angle 32, 60
Ground range data spacing 40-41
Ground range to slant range 52-53
Heading
Platform 42-43
Heading (continued)
Processed scene center 41-42
Track angle 42-43
Hour angle 32
Image center
Central incidence angle 38-39
Central Look angle 37-38
Earth radius 36-37
Image timings 32
Incidence angle 67-68
Latitude 55-59
Latitude at nadir. 35-36
Leader file 15
Longitude at nadir 34
Metadata 15
Nadir
Earth radius 34
Latitude 35-36
Longitude 34
Spacecraft altitude 35-36
Orbits 71-72
Pixel spacing
Azimuth 40
Ground range 40-41
Radarsat modes 27
Slant range 40-41
Platform heading 42-43
Platform position data record
Data interval 32
Greenwich hour angle 32
Hour angle 32
Image timings 32
Platform position data record 24
Spacecraft state vectors 31
Pointing vector for spacecraft. 64-65
Radarsat imaging modes 18-19
Reduced latitude 55-59
SAR sensor parameters 19-20
Scene center heading 41-42
Scene length in azimuth 40
Scene sizes
Scene length in azimuth 40
Scene width in range 39-40
Swath velocity 40
Scene width in range 39-40
Slant range 29-31
Slant range data spacing 40-41
Slant range to center pixel 29-31
Slant range to ground range 51-52
Space state vectors 31
Spacecraft altitude at nadir 35-36
Spherical coordinates 48
State vectors 31
Swath velocity 40
Swath width 53
Target position 65-66
Target velocity 67
Track angle 42-43
Universal constants
Earth eccentricity 17
Earth sidereal rotation rate 17
Equatorial Earth radius 17
Polar Earth radius 17
Speed of light 17

