

Terrain correction and ortho-rectification

Rüdiger Gens

Terrain correction

Backward geocoding

- DEM coordinates are transformed into the earth-centered rotating (ECR) Cartesian coordinate system
 - · orbit modeled by second degree polynomial
 - orbit grid point for each DEM grid point needs to satisfy SAR range equation and SAR Doppler equation
 - Radarsat orbits might need substantial refinement using tie points

Backward geocoding

- solution non-linear system
 - · iteration along orbit for each DEM pixel
 - iteration results (image time and range coordinates) are linearly transformed into coordinate system of slant range image
- resampling assigns image grey value of slant range image to output pixel of geocoded image
 - depending on the relation between DEM and radar resolutions interpolation methods important
 - bilinear interpolation appropriate (Small et al., 1997)

Forward geocoding

- DEM coordinates (latitude, longitude, height) conversion into SAR image coordinates (line, sample)
 - solving the Doppler shift equation relates relative velocity between point on the Earth and satellite to measured frequency shift of returned radar pulses
 - · shift equation only dependent on time
 - equation solved using Newton-Raphson iteration

Forward geocoding

- generation of simulated SAR image
 - $\boldsymbol{\cdot}$ using ephemeris data as input to satellite model
 - using DEM information for a given location as input to Earth model
 - backscatter values from simple backscatter model
 - results in simulated SAR image in real SAR image geometry

Forward geocoding

- correlation of real and simulated SAR image
 - · matching of points on a regular grid
 - calculation of mapping function that relates points in simulated and real image
- geocoding using mapping function
 - geolocating SAR image while correcting for terrain related distortions

Layover / Shadow masks

- can be derived from DEM
- useful to provide information about problem areas
 - shadow regions no information available
 - layover and foreshortening reduced spatial resolution

Ortho-rectification

During data
 acquisition the image
 is geometrically
 distorted due to
 sensor, platform and
 object
 characteristics.

 Evaluation, exploitation and comparison of remotely sensed images requires geometrically corrected data.

Need

Transformation

- Transformation involves calculation of a mathematical function which fits the tie points optimally. This could be
 - First order polynomial (conformal, affine, bilinear)
 - · Second order polynomial
 - · Higher order polynomials
- Note: The term 'georeferenced image' is sometimes used for an image that has been transformed. At other times, the term is used synonymously with the term 'geocoded image'

Polynomial Order

• 1st order: 6 parameters

$$x = a_0 + a_1x + a_2y$$

 $y = b_0 + b_1x + b_2y$

• 2nd order: 12 parameters

$$x = a_0 + ... + a_3 x^2 + a_4 xy + a_5 y^2$$

 $y = b_0 + ... + b_3 x^2 + b_4 xy + b_5 y^2$

Bottom line

- need to terrain correct radar imagery in order to properly combine them with optical images
 - · for moderately steep to steep terrain
 - on a case by case basis for low slopes

