Map projections

Rüdiger Gens

UNIVERITY OF ALASKA.
UNIVERSTY OF ALASKA
FAIRBANKS

Outline

- Relevant terms
- Why map projections?
- Map projection categories
- Projection surfaces
- Features preserved from distortions
- Map projection examples
- Right choice

Relevant terms

- parallels of latitude
- lines of equal latitude on the surface of a sphere
- meridian
- lines of equal longitude
- grid
- rectangular coordinate system superimposed on a map
- graticule
- set of parallels and meridians seen on a map

Relevant terms

- scale factor
- $k=$ distance on the projection distance on the sphere
- describes the distortions as a result of projection
- unrelated to map scale

Why map projections?

- problem of mapping three-dimensional coordinates related to a particular datum on a flat surface
- maps are two-dimensional
- impossible to convert spheroid into flat plane without distortions
\rightarrow map projections

Cylindrical projections

- cylinder that has its entire circumference tangent to the Earth's surface along a great circle (e.g. equator)

Conic projections

- cone that is tangent to the surface along small circle (e.g. parallel of latitude)

7

Azimuthal projections

- projecting positions directly to a plane tangent to the Earth's surface

Equidistant projections

Sphere
Projection

- scale factor along a meridian is equal to 1
- shape and area of square are distorted

Equal-area projections

Sphere

Projection

- equal areas are represented by the same map area regardless of where they occur

Conformal projections

Sphere
Projection

- angles on a conformal map are the same as measured on the Earth's surface
- meridians intersect parallels at right angles

Map projections examples

- Cylindrical projections
- Mercator projection
- Transverse Mercator projection
- Oblique Mercator projection
- Azimuthal projections
- Lambert Azimuthal Equal-Area projection
- Stereographic (conformal) projection

Map projections examples

- Conic projections
- Conic projection with two standard parallels
- Lambert Conformal Conic projection
- Albers Conic Equal-Area projection

Mercator projection

- regular cylindrical projection
- particularly useful for navigation
- course with constant azimuth (compass direction) is straight line
- meridians of longitude
- equally spaced vertical lines
- intersected at right angles by straight horizontal parallels
- projection parameters
- true scale latitude
- central meridian

Transverse Mercator projection

- conformal cylindrical projection
- central meridian and equator are straight lines
- scale is constant along any meridian
- central meridian mapped at true scale
- slightly reduced scale (0.9996) in UTM system
- projection parameters
- central scale
- central meridian
- origin latitude

Oblique Mercator projection

- azimuth of central line needs to be specified
- example for this projection: peninsular Malaysia

Stereographic projection

- conformal azimuthal projection
- most commonly used to map polar regions
- polar (pole is center point)
- meridians: straight radii, parallels:concentric circles
- oblique (only central meridian straight)
- other meridians/parallels: circular arcs
- projection parameters
- center longitude
- center latitude
- center scale

Lambert Azimuthal Equal-Area projection

- scale
- true only at center point
- decreases in radial direction away from the center
- perpendicular to radius increases with distance
- polar (pole is center point)
- meridians: straight radii, parallels:concentric circles
- oblique (only central meridian straight)
- other meridians/parallels: complex curves
- projection parameters
- center longitude
- center latitude

Conic projections with two standard parallels

- reduce scale factor below 1 between standard parallels
- increase it above 1 outside parallels

Albers Conic Equal-Area projection

- parallels: concentric circular arcs
- meridians: equally spaced
- scale: true along standard parallels, smaller between them, larger outside them
- scale variation along the meridians to maintain equal area
- projection parameters
- North and South standard parallel
- central meridian
- origin latitude

Lambert Conformal Conic projection

- parallels: concentric circles
- meridians: equally spaced straight radii of theses circles
- scale: true along standard parallels, smaller between them, larger outside them
- projection parameters
- North and South standard parallel
- central meridian
- origin latitude

Right choice

- map purpose
- for distribution maps: equal area
- for navigation: projections that show azimuths or angles properly
- size of area
- some projections are better suited for East-West extent, others for North-South
- for small areas the projection is relatively unimportant
- for large areas the projection is very important

Right choice

- conic projections for mid-latitudes
- true along some parallel between the poles and equator
- cylindrical for equatorial regions
- true at the equator and distortion increases towards the poles
- azimuthal for poles
- true only at their center point but distortion is generally worst at the edges

UANTRBANGANS

Questions

$x_{\text {sf }}$

