

Digital Image Filtering

Rüdiger Gens

Outline

- digital image filtering
- filter types
 - low-pass, high-pass
 - directional, edge detection
 - morphological
 - texture
 - speckle reduction
- applications

Digital image filtering

- sometimes referred to as convolution
- neighborhood operation
- filtering manipulates (removes, reduces, or enhances) one of the image components
 - low frequency (subtle change in pixel values)
 - high frequency (sudden change in pixel values)
 - noise / speckle
- uses a kernel (small image window) that is multiplied with each pixel in the image

Digital image filtering

- various methods of treating the edge pixels
 - zero values
 - input pixel values
 - input image boundary mirroring before filtering
- keeping the dynamic range of pixel values
 - normalizing the kernel
- dimension of kernels
 - mostly equal dimensional, sometimes linear
 - mostly odd number of kernel elements

Low-pass filter

Original

3x3 low-pass

- used to suppress high-frequency variation
- used to suppress noise
- has smoothing effect

Kernel

Filter strength

Original

3x3 low-pass

5x5 low-pass

filtering strength related to kernel size and weighting

High-pass filter

Original

3x3 high-pass

- used to enhance high-frequency variations
- noise usually gets enhanced as well
- can enhance variations in certain directions

-1	-1	-1
-1	9	-1
-1	-1	-1

Kernel

Median filter

3x3 Median

- less blurring than low-pass filter
- less sensitive to extreme values

pixel value = middle value in an ordered set of values = (3, 5, 6, 7, 9, 10, 11, 14, 25)

Directional filter

3x3 vertical edge

 enhances vertical lines and edges

-1	0	1
-2	0	2
-1	0	1

Kernel

Directional filter

Original

3x3 horizontal edge

 enhances horizontal lines and edges

1	2	1
0	0	0
-1	-2	1

Kernel

Edge detection – Sobel

3x3 Sobel

$$G_m = \sqrt{G_x^2 + G_y^2}$$

- uses horizontal and vertical direction filters
- calculates the magnitude of the two gradients
- limited use with noisy imagery

Edge detection – Laplace

3x3 Laplace

- non-directional filter
- symmetric
- various implementations with different weighting strategies

-1	-1	-1
-1	8	-1
-1	-1	-1

Kernel

Morphological filter – Erosion

3x3 Erosion

- minimum value within filter window
- reduces bright areas

Morphological filter – Dilation

3x3 Dilation

- maximum value within filter window
- enhances bright areas

Morphological filter – Opening

3x3 Erosion

3x3 Opening

erosion followed by dilation

Morphological filter – Closing

Original

3x3 Dilation

3x3 Closing

dilation followed by erosion

Texture – Mean Euclidian distance

3x3 Mean Euclidian distance

 first-order moment about the mean

mean Euclidian distance =
$$\frac{\sqrt{\sum (p_{i,j} - p_c)^2}}{n-1}$$

where

 $p_{i,j}$ = pixel value at location (i, j) in the filter window

 p_c = center pixel value

Texture – Variance

3x3 Variance

- second-order moment about the mean
- a measure of gray tone variance within the window

variance =
$$\frac{\sum (p_{i,j} - M)^2}{n-1}$$

where

 p_{ii} = pixel value at location (i, j) in the filter window

M = mean pixel value

Texture – Skewness

3x3 Skewness

- third order moment about the mean
- departure from symmetry about the mean gray level

skew =
$$\frac{\left|\sum (p_{i,j} - M)^3\right|}{(n-1)*\sqrt{\text{var}^3}}$$

where

 $p_{i,j}$ = pixel value at location (i, j) in the filter window

M = mean pixel value

var = variance of pixel values

Texture – Kurtosis

3x3 Kurtosis

- fourth order moment about the mean
- measure of the spread of gray tones about the mean

kurtosis =
$$\frac{\sum (p_{i,j} - M)^4}{(n-1)* \text{var}^2}$$

where

 $p_{i,j}$ = pixel value at location (i, j) in the filter window

M = mean pixel value

var = variance of pixel values

Speckle reduction filters

- mostly applicable to SAR imagery
 - accounts for number of looks
- use local statistics
 - mean value, standard deviation etc.
- variety of filters developed over the years
 - (enhanced) Lee
 - (enhanced) Frost
 - Kuan
 - Gamma MAP

Speckle – Lee

3x3 Lee

Speckle – Lee

kernel math

```
pixel value = CP * W + I * (1 - W)

where

N_{look} = \text{number of looks}
CP = \text{center pixel value}
I = \text{mean pixel value}
S = \text{standard deviation of pixel values within filter window}
W = 1 - C_u^2 / C_i^2
C_u = \sqrt{1/N_{look}}
C_i = S/I
```


Speckle – Enhanced Lee

3x3 Enhanced Lee

Speckle – Enhance Lee

kernel math

$$\begin{aligned} \text{pixel value} = & \begin{cases} \textit{I} & \text{for } C_i <= C_u \\ \textit{I*W} + \textit{CP*}(1-\textit{W}) & \text{for } C_u < C_i < C_{\text{max}} \\ \textit{CP} & \text{for } C_i >= C_{\text{max}} \end{cases} \end{aligned}$$

where

 N_{look} = number of looks

CP = center pixel value

= mean pixel value

= standard deviation of pixel values within filter window

DAMP = damping factor

 $= \exp^{-DAMP*((C_i - C_u)/(C_{max} - C_i))}$ W

 $C_u = \sqrt{1/N_{look}}$

 $C_i = S/I$ $C_{\text{max}} = \sqrt{1 + 2/N_{look}}$

Speckle – Frost

3x3 Frost

Speckle – Frost

Kernel math

pixel value =
$$\sum_{i=1}^{m} \sum_{j=1}^{n} (i, j) * M_{i, j} / \sum_{i=1, j=1}^{m, n} M_{i, j}$$

where

m, n = dimensions of filter kernel

I = mean pixel value

S = standard deviation of pixel values within filter window

T = absolute pixel distance from center pixel

DAMP = damping factor

 $M = \exp^{-A*T}$

 $A = DAMP * C_i^2$

 $C_i = S/I$

Speckle – Gamma MAP

3x3 Gamma MAP

Speckle – Gamma MAP

kernel math

$$\label{eq:pixelvalue} \begin{aligned} \text{pixelvalue} &= \begin{cases} I & \text{for } C_{i} \text{ less than or equal to } C_{u} \\ \frac{B*I + \sqrt{D}}{2*\alpha} & \text{for } C_{u} < C_{i} < C_{\text{max}} \\ CP & \text{for } C_{i} \text{ greater than or equal to } C_{\text{max}} \end{cases} \end{aligned}$$

where

= number of looks N_{look}

= variance in filter window var

CP = center pixel value

= mean pixel value in the filter window

 $C_u = 1/\sqrt{N_{look}}$ $C_i = \sqrt{\text{var}/I}$

 $C_{\text{max}} = \sqrt{2} * C_u$ $\alpha = (1 + c_u^2)/(c_i^2 - c_u^2)$

 $B = \alpha - N_{look} - 1$

 $D = I_2 * B_2 + 4 * \alpha * N_{look} * I * CP$

Applications

- detection of linear features and edges
 - faults
 - lineaments
 - roads
 - railways
 - runways etc.
- noise reduction
 - primarily SAR imagery

Conclusions

- there is no fit all applications filter
- your needs have to be very well defined
 - what is the filter supposed to do?
 - there probably is a filter out there to meet your needs – finding it is sometimes a challenge
 - the solution to your problem might be a combination of different filters
- filtering always involves a <u>loss</u> of information

Questions

