Height systems

Rüdiger Gens
Outline

• Why bother about height systems?
• Relevant terms
• Coordinate systems
• Reference surfaces
• Geopotential number
• Height systems
Why bother about height systems?

- give a meaning to a value defined for height
- combination of measurements from different sources
 - GPS measurements vs. leveling measurements
- three-dimensional calculations
 - SAR interferometry
Relevant terms

- **spheriod**
 - any surface resembling a sphere
 - an ellipsoid of revolution

- **ellipsoid**
 - defined by axes, flattening and eccentricity

- **flattening and eccentricity**
 - characterize the deviation from a sphere
Geographical and geodetic coordinates

Geographic latitude

Geodetic latitude

Height systems
Geographical and geodetic coordinates

- geographical coordinates
 - implying spherical Earth model

- geodetic coordinates
 - implying ellipsoidal Earth model
Cartesian coordinates

- geodetic coordinates inappropriate for satellite imagery
 \rightarrow cartesian coordinates
Approximation vs. Reality

- ellipsoid is a good approximation to the shape of the Earth but not an exact representation
- Earth surface is everywhere perpendicular to the direction of gravity → *equipotential surface*
- true shape of the Earth is known as *geoid*
Reference surfaces

- three reference surfaces
 - topography
 - geoid
 - ellipsoid
• *topography* represents the physical surface of the Earth
• *geoid* defined as level surface of gravity field with best fit to mean sea level
 • maximum difference between geoid and mean sea level about 1 m
ellipsoid defines mathematical surface approximating the physical reality while simplifying the geometry
Reference surfaces

- **geoid undulation**: vertical separation between geoid and reference ellipsoid
 - differences between ± 100 m
 - global root mean square of around 30 m
Reference surfaces

- **vertical deflection**: angle between the ellipsoid normal and the plumb line
 - usually resolved in a north-south component ξ and an east-west component η
 - angles usually amount to a few arc seconds
Global earth model

- geoid defined by a set of coefficients of a spherical harmonic expansion
 → global earth model

- several models available
 - OSU91
 - Earth Geopotential Model 1996 (EGM96)
Geopotential number

- different height systems can be related to each other by the geopotential number C

$$C = W_0 - W = \int_{\text{geoid}}^{\text{point}} g \, dn$$

- W and W_0: the potentials of gravity of a point and the geoid
- g: gravity value
- dn: leveling increment
Geopotential number

- different heights calculated by dividing the geopotential number by a gravity value
Heights

- **dynamic height**
 - constant normal gravity γ_0 for an arbitrary standard latitude (usually 45 degrees)
 - no geometrical meaning

- **orthometric height**
 - natural “height above sea level”
 - measured along the current plumb line from the foot point on the geoid and the point on the surface
 - gravity value: mean gravity
Heights

- normal height
 - vertical distance from terrain surface to the ellipsoid reduced by the height anomaly
 - measured along the ellipsoidal normal
 - gravity value: mean normal gravity
Solution

- ellipsoid is convenient reference frame
 - mathematical figure
 - provides good approximation to the geoid

- geoid better height reference system
 - reference to mean sea level allows to use tide gauges as height reference points
 - physical significance: ensures horizontal representation of water surfaces such as lakes and seas
Questions