

Digital elevation models

Rüdiger Gens

Outline

- Representations
- Applications for digital elevation models
- Issues for choosing the right technique
- Techniques for creating DEMs
- Problem of quality control
- Quality measures
- Current status

Source: NASA Remote Sensing Tutorial (http://rst.gsfc.nasa.gov/)

UNIVERSITY OF ALASKA
FAIRBANKS

Source: **USGS EROS Data Center**

(ftp://edcsgs9.cr.usgs.gov/pub/data/srtm/)

Applications for DEMs

- topographic mapping
- geomorphological studies (slope, aspect)
- info layer in geographical information systems
- telecommunication
- aviation
- geometric correction of image data

Issues

- size of the area to be covered
- accuracy required
- acquisition costs (satellite vs. airborne vs. field)
- time factor
- accessibility of terrain
- cloud coverage for remote sensing
- verification of data quality

Techniques for creating DEMs

- Digitizing contour lines
- Aerial photogrammetry
- Stereoscopy using optical satellite imagery
- Laser scanning
- Radar techniques

Digitizing contour lines

- derived from existing topographic maps
- various interpolation methods
 - weighted moving averages
 - bicubic splines
 - finite elements
- still the main source for creating DEMs

- bundle block adjustment
 - aerial triangulation
 - GPS reduces number of ground control points

Optical satellite data

- stereo SPOT Pan images
- two processing approaches
 - geometric model of a CCD line scanner
 - automatic matching techniques

Optical satellite data

- Modular Optoelectronic Multispectral Scanner (MOMS)
- stereo acquisition is along-track direction
 - flown on the MIR station

Laser scanning

Radar techniques

- Radargrammetry
 - same area from two different angles
 - used for long time with airborne systems
 - some potential for RADARSAT data
 - usually requires ground control points

Radar techniques

- Radarclinometry
 - also referred to as shape-from-shading
 - inversion of the radiometric incidence angle correction enables an estimate of local terrain slope
 - filtering of data improves quality

Radar techniques

- SAR interferometry
 - repeat-pass geometry (satellite)
 - covering large areas in short time frame
 - computationally intensive
 - variety of data available

Problem of quality control

- no standard procedure for quality assessment
- no generally accepted specifications
- common procedure: reference DEM
- assumptions
 - reference DEM is correct
 - differences are due to errors in the digital data
 - → any distortions in reference DEM remain undetected
- statistically: reference one order better

- lineage (metadata)
 - data history, processing, assumptions etc.
- positional accuracy
 - root mean square (measure of overall accuracy)
 - standard deviation (measure of precision)
- attribute accuracy
- data completeness
 - error of omission (measurable)

- logical consistency
 - structural integrity of the data
 - fidelity of relationships
- semantic accuracy
 - number of features, relationships or attributes which agree with the selected model
- temporal information
 - type of update
 - validity period of the data set

- accuracy of derivatives of height
- slope gradient
 - maximum rate of change of altitude
- slope aspect
 - compass direction of maximum
- profile convexity
 - rate of change of gradient
- plan convexity
 - rate of change of aspect

- ground control points
 - requires 20 interior and eight edge points for determination of root mean square
 - accuracy computed by comparison of linear interpolated DEM elevations with known elevations
 - points well distributed
 - points representative for the terrain
 - order of preference for accepting test points: field control, aerotriangulated points, SPOT elevations, or contour points

Current status

- reference DEM still standard for quality control
- increasing awareness of data quality problem
- more research required
- lack of requirements for DEM from user's side
 - required accuracy level for application
 - useful quality measure to determine usefulness

Questions

