

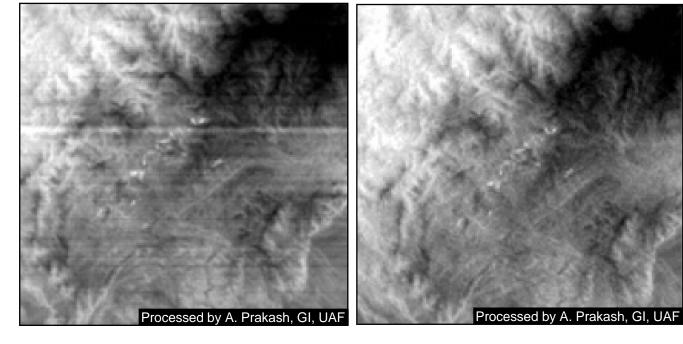
Atmospheric and Radiometric Corrections for Remote Sensing Data

Rüdiger Gens

Outline

- striping
- (partially) missing lines
- illumination and view angle effects
- sensor calibration
- terrain effects
- atmospheric correction

Striping

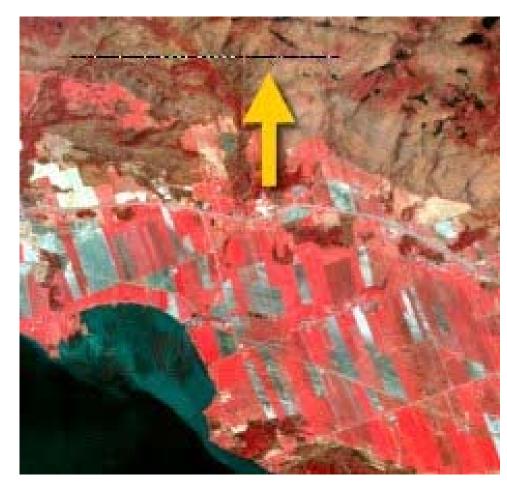

- due to non-identical detector response
 - detector characteristics
 - changes with time / rise of temperature
 - failure
- various methods (sometimes used in combination)
 - look up tables (radiometric response measurements at different brightness levels)
 - onboard calibration
 - histogram matching (gain and offset) line pattern

Striping – Landsat TM

Striping

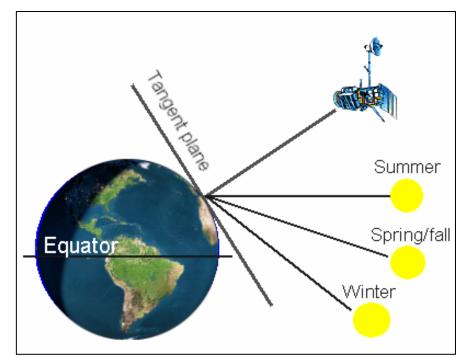
De-striped

(Partially) missing lines


- errors in
 - sampling or scanning equipment
 - transmission or recording of image data
 - reproduction of the media containing the data
- two methods
 - interpolation using data from adjacent scan lines
 - interpolation data at the same scan line from different spectral bands

Partially missing lines - Example

Source: CCRS Remote Sensing Tutorial



Sun angle correction

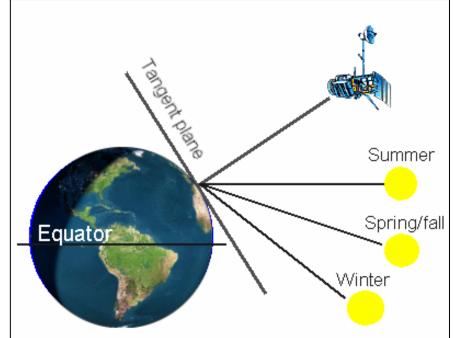
- position of the sun relative to the earth changes depending on time of the day and the day of the year
- in the northern hemisphere the solar elevation angle is smaller in winter than in summer

Adapted from Lillesand and Kiefer

Sun angle correction

- an absolute correction involves dividing the DN-value in the image data by the sine of the solar elevation angle
- size of the angle is given in the header of the image data

$$DN_{corr} = \frac{DN}{\sin \alpha}$$



Sun Illumination

- position of sun
 - sun elevation (sun-angle)
 - sun earth distance
- correction elevation
 - normalization
 - division of each pixel value by the sine of solar elevation angle for particular time and location per spectral band
- correction distance
 - sun irradiance decreases with square of distance
 - normalization

Adapted from Lillesand and Kiefer

Sensor calibration

Atmospheric and radiometric corrections

- necessary to generate absolute data on physical properties
 - reflectance
 - temperature
 - emissivity
 - backscatter
- values provided by data provider / agency

Terrain effects

- cause differential solar illumination
 - some slopes receive more sunlight than others
- magnitude of reflected radiance reaching the sensor
 - topographic slope and aspect
 - bidirectional reflectance distribution function (BRDF)

Terrain correction

- Minnaert correction
 - first order correction for terrain illumination effects

$$-_{n} = L \cdot cos(e)^{k-1} \cdot cos(i)^{k}$$

- L_n normalized radiance
- L measured radiance
- e slope (derived from DEM)
- i incidence angle of solar radiation
- k Minnaert constant (estimated for each image)

Terrain correction

- shaded relief model (SRM)
 - requires digital elevation model
 - generated with constant albedo (brightness dependent solely on topographic effects)
 - ratio of image and SRM yields spectral radiance of ground cover (noisy)
 - alternative

$$DN_{corr} = m \cdot \left(DN - SRM_{DN} \right) + a$$

Why do atmospheric correction?

- physical relation of radiance to surface property
 - atmospheric component needs to be removed
- multispectral data for visual analysis
 - scattering increases inversely with wavelength
- image ratios
 - leads to biased estimate
- time difference between image acquisition and ground truth measurements

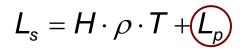
Atmosphere and radiation

 relationship between radiance received at the sensor (above atmosphere) and radiance leaving the ground

$\boldsymbol{L}_{s} = \boldsymbol{H} \cdot \boldsymbol{\rho} \cdot \boldsymbol{T} + \boldsymbol{L}_{p}$

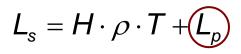
- L_s at sensor radiance
- H total downwelling radiance
- ρ reflectance of target
- T atmospheric transmittance
- L_p atmospheric path radiance (wavelength dependent)

Atmospheric correction methods


- image-based methods
 - histogram minimum method
 - regression method
- radiative transfer models
- empirical line method

Histogram minimum method

- histograms of pixel values in all bands
- pixel values of low reflectance areas near zero
 - exposures of dark colored rocks
 - deep shadows
 - clear water
- lowest pixel values in visible and near-infrared are approximation to atmospheric path radiance



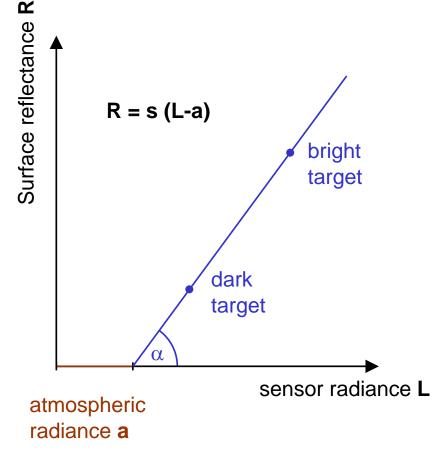
minimum values subtracted from image

Regression method

- applicable to dark pixel areas
- near-infrared pixel values are plotted against values in other bands
- least square line fit using standard regression methods
- resulting offset is approximation for atmospheric path radiance
- offset subtracted from image

Radiative transfer models

- limited by the need to supply data about atmospheric conditions at time of acquisition
- mostly used with "standard atmospheres"
- available numerical models
 - LOWTRAN 7
 - MODTRAN 4
 - ATREM
 - ATCOR
 - 6S (Second Simulation of the Satellite Signal in the Solar Spectrum)

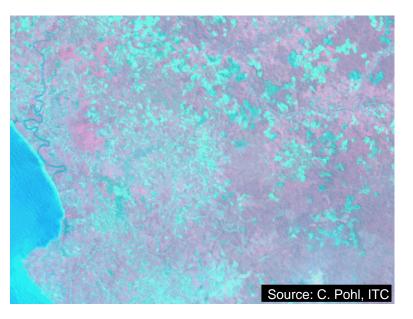

- originally developed DLR (Germany)
- different versions
 - satellite imagery ATCOR 2 (flat terrain), ATCOR 3 (rugged terrain)
 - airborne imagery ATCOR 4 (flat and rugged)
- various versions commercially available
 - standalone version in IDL
 - ERDAS Imagine
 - PCI Geomatics

Empirical line method

- selection of one dark and one bright target
- ground reflectance measurement
 - field radiometer
- sensor radiance computed from image
- slope s = cos (α) and intercept a of line joining two targets

Atmospheric and radiometric corrections

Haze


- Atmospheric and radiometric corrections
- due to Rayleigh scattering
 - particles size responsible for effect smaller than the • radiation's wavelength (e.g. oxygen and nitrogen)
- haze has an additive effect resulting in higher **DN** values
- decreases the general contrast of the image
- effect is wavelength dependent
 - more pronounced in shorter wavelengths and negligible in the NIR

Haze – Example Indonesia

Hazy

Corrected

Questions

