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remote sensing 



Jeremy NicollASF Seminar Fall 2007 2

Polarization States of a Coherent Plane Wave

vertically polarized

horizontally polarized

electric field vector
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Polarimetric SAR System Configurations

• single pol:
– VV or HH (or possibly HV or VH)

• dual pol:
– HH and HV, VV and VH, or HH and VV

• quad pol (fully polarimetric):
– HH, VV, HV, and VH

• Polarization types
– Linearly polarized
– Circularly polarized
– Elliptically polarized

relative phase between channels is important information



Jeremy NicollASF Seminar Fall 2007 4

Polarimetric SAR Measurement

receive: H and / or V

transmit: H and / or V

HH: H transmit, H receive
VV: V transmit, V receive
HV: H transmit, V receive
VH: V transmit, H receive
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Penetration of Microwaves

from: FAO - Radar imagery: 
theory and interpretation, lecture notes



red = L-HH green = L-HV blue = L-VV courtesy of JPL

native
forest

lakes

Central Sumatra, Indonesia (50 km x 100 km)

clear-cuts

Multi-Polarization SAR Image (SIR-C 
1994)
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red = L-HV green = C-TP blue = X-VV

Freital, Saxonia, Germany (11 km x 20 km)

forest

agriculture

Multi-Polarization/Multi-Frequency SAR 
Image (SIR-C/X-SAR 1994)
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Representation of the data – Jones Matrix

• Send out a 
polarized wave 
(vertical, 
horizontal, or some 
combination).

• The wave interacts 
with a scatterer, 
causing a linear 
transformation of 
the wave.

• The wave is 
detected. 

• S can be reduced 
to the independent 
parameters.

Equations from SAR 
Polarimetry Tutorial by 
Martin Hellmann
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• But my resolution cell is larger than my scatterers …
• I can have more than one scatterer, and more than one type of scatterer 

in my resolution cell …

– Convert Jones to a Pauli matrix

– Create a coherency matrix (<XY> denote ensemble averaging, assuming  
homogeneity.
Equations from SAR Polarimetry Tutorial by Martin Hellmann

Representation of the data – Coherency matrix



Decomposition of the data

• Goal – separate contributions into different scattering mechanisms.

Overview of Decomposition theorems (from Eric Pottier)
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•

Pauli Decomposition

Image from E-SAR over Oberpfaffenhofen (from 
SAR Polarimetry Tutorial by Martin Hellmann)
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The Cloude Decomposition



Jeremy NicollASF Seminar Fall 2007 13

Entropy, Anisotropy

• Perform Eigenvalue decomposition of coherency matrix into 
orthogonal scattering mechanisms.
– Each “decomposed” matrix represents a single scattering mechanism.

• Compare eigenvalues
– If they are nearly the same, there is no dominant scattering mechanism. 

Entropy =>1.
– If one dominates, Entropy=>0.

• Anisotropy
– Compare second and third eigenvalues. The more they are different, the 

larger the anisotrpoy. A high anisotropy says the second eigenvalue 
dominates, while a low anisotropy says the 2nd and 3rd are equally 
important.
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Average Scattering mechanism (alpha)

• Any Pauli vector (and therefore Jones matrix) can be rotated 
to become the unity vector.

• Alpha is the first rotation term. Its interpretation is:

• Other terms are target orientation and phase angles.
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H-alpha plane
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HA-alpha imagery

• From ESA POLSARPRO 
manual, chapter 5.
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Applications
• Surface roughness
• Surface slopes
• Soil moisture
• Vegetation biomass
• Vegetation heights
• Tree species
• Snow monitoring
• Water equivalent ice thickness
• Meteorology
• Hydrology
• Geology
• Topography
• Cartography
• De-mining
• Sea ice
• Oceanography
• Forestry
• Crop classification
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Crops

Image courtesy of Canadian Centre for Remote Sensing
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Sea Ice

• Possible to better 
distinguish ice 
edge from 
windswept ocean

• Better ice type 
classification than 
single pol.

• Image by JPL’s AIRSAR 
from S. V. Nghiem and C. 
Bertoia, “Multi-Polarization 
C-Band SAR Signatures of 
Arctic Sea Ice,” IGARSS 
2001.
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Hydrology

• “ … the polarimetric 
parameters include a 
significant amount of soil 
moisture and surface 
roughness information.”

• C. Thiel, S. Gruenler, M. Herold, V. 
Hochschild, G. Jaeger & M. Hellmann, 
Interpretation and Analysis of 
Polarimetric L-Band E-SAR-Data for 
the Derivation of Hydrologic Land 
Surface Parameters, IGARSS 2001
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PolInSAR
• “SAR interferometry is today an 

established technique for estimation of 
the height location of scatterers through 
the phase difference in images acquired 
from spatially separated apertures at 
either end of a baseline … scattering 
polarimetry is sensitive to the shape, 
orientation, and dielectric properties of 
scatterers … In polarimetric SAR 
interferometry (Pol-InSAR), both 
techniques are coherently combined to 
provide sensitivity to the vertical 
distribution of different scattering 
mechanisms. Hence, it becomes 
possible to investigate the 3D structure 
of volume scatterers such as vegetation 
and ice, promising a breakthrough in 
radar remote sensing problems.”

• Krieger, Papathanassiou, Cloude, 
“Spaceborne Polarimetric SAR 
Interferometry: Performance Analysis 
and Mission Concepts” -- EURASIP 
Journal on Applied Signal Processing 
2005:20, 3272–3292
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Forest Biomass

• Biomass determined 
from tree height, as a 
direct result of 
POLINSAR. Some 
dependence on tree 
type in the model.

• T. Mette, K. Papathanassiou, 
I. Hajnsek, “Biomass 
estimation from polarimetric 
SAR interferometry over 
heterogeneous forest terrain,” 
IGARSS 2004
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Advanced Polarimetric Instruments

• Multifrequency
• Multi-instrument
• Sparse matrix / Circular polarized / Linear-circular

RGB image using the total power (in dB) of the three 
frequencies (red=C-band, green=L band, blue=P- 
band.)  from B. Scheuchl, I. Hajnsek, and I. 
Cumming, “Sea Ice Classification Using Multi- 
Frequency Polarimetric SAR Data,” IGARSS 
2002
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Calibration

• Channel imbalance (f)
• Cross-talk (delta)
• Noise (N)
• Faraday rotation (omega)
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Ionospheric Effects on Broadband 
Linearly Polarized SAR Signals

• group delay:

• Non-linear residual phase 
within SAR bandwidth

• phase delay:

Advance of SAR phase

Delay of signal envelope

Range blurring of SAR image

• Faraday Rotation
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FR Estimation from imagery

• Measured Scattering matrix of a sufficiently calibrated SAR system

• Direct estimation from scattering matrix (Freeman, 2004):

• Estimation from circular basis (Bickel & Bates, 1965):

⎥
⎦

⎤
⎢
⎣

⎡
ΩΩ−
ΩΩ

⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
ΩΩ−
ΩΩ

=⎥
⎦

⎤
⎢
⎣

⎡
cossin
sincos

cossin
sincos

vvhv

vhhh

vvhv

vhhh

SS
SS

MM
MM

( )
( )⎥

⎦

⎤
⎢
⎣

⎡
+
−

=Ω −

vvvv

hvvh

MM
MM1tan

2
1

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
1

1
1

1

2221

1211

j
j

MM
MM

j
j

MZ
ZZ

vvhv

vhhh

( )∗=Ω 2112arg
4
1 ZZ



Jeremy NicollASF Seminar Fall 2007 27

FR Estimation Toolbox

• Full-pol PalSAR data
• 10x10 averaging of the 

complex valued SAR 
data for noise reduction

• FR estimation according 
to Bickel & Bates method

• Statistics as well as 
range and azimuth 
analysis

• FR angles of up to 4.5º 
found

PalSAR data over Washington DC
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FR Correction

• Calibration and correction of FR by model inversion:

• FR Correction software allows both the correction for 
constant Ω

 
and the correction for spatially varying Ω 

• Example:
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Data waiting to be explored:

• PALSAR L-Band
– Greenland 

(including 
POLINSAR)

– Alaska
– Amazon

• TerraSAR-X
• Envisat
• Airborne
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Sensors

Image from Eric Pottier, Radar polarimetry basic theory
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