Using SAR to Examine Landfast Sea Ice Extent and Variability

Andy Mahoney PhD Candidate, Snow Ice and Permafrost Geophysics

Acknowledgements

Project collaborators: Hajo Eicken, Lew Shapiro, Allison Gaylord, Pat Cotter

> Funding: Mineral Management Service

Thanks Alaska Satellite Facility! especially Rudi Gens

Definition of Landfast Sea Ice

Various definitions in the literature

- "Sea ice that remains attached to the coast ..." (WMO, 1970)
- "Ice that is grounded or forms a continuous sheet which is bounded at the seaward edge by an intermittent or nearly continuous zone of grounded ice" (Barry et al., 1979)

Ice foot

Grounded ridges

- We use two criteria for remotely sensed data:
- 1. the ice is contiguous with the land
- 2. the ice lacks detectable motion for approximately 20 days

Seaward Landfast Ice Edge (SLIE)

Methodology

Study area and dataset

Table 1: Summary of Radarsat imagery used in this study

Ice season	<pre># parent scenes acquired</pre>	<pre># mosaics generated</pre>	Mean period spanned by mosaic (days)	Mean period between 3 consecutive mosaics (days)
1996-97	134	29	2.7	20.2
1997-98	126	28	2.5	19.9
1999-99	111	30	2.5	19.9
1999-00	113	28	2.6	19.0
2000-01	91	30	2.4	20.6
2001-02	152	35	2.5	16.7
2002-03	123	29	2.6	20.8
2003-04	109	29	2.1	21.0
All years	959	238	2.5	19.8

Applying our definition of landfast ice to SAR data

- **1)** The ice is contiguous with the coast
- 2) The ice lacks detectable motion for approximately 20 days

Requirements:

a time interval to determine motion / lack thereof

- a single image is not sufficient
- we use 3 consecutive colocated mosaics \Rightarrow ~20 days high quality data
- ScanSAR calibrated geotiffs 100m resolution
- accurate georeferencing co-location error < 500m

Towards an automated SLIE detection algorithm

The backscatter signature of landfast ice should remain constant over consecutive images

Spatial gradient fields

The gradient of an image is a <u>vector field</u> with two components defined by:

In discrete form, it is approximated by:

$$\nabla \Phi = \frac{\partial \Phi}{\partial x} \underline{i} + \frac{\partial \Phi}{\partial y} \underline{j}$$

where \underline{i} and \underline{j} are the unit horizontal and vertical vectors respectively

Vert. gradient

24 Dec 2001 17:19

 $\left(\frac{\partial \Phi}{\partial x}\right)_{i,i} \approx \frac{\Phi_{i-d,j} - \Phi_{i+d,j}}{d}, \left(\frac{\partial \Phi}{\partial y}\right)_{i,i} \approx \frac{\Phi_{i,j-d} - \Phi_{i,j+d}}{d} \quad (d = 3)$

Gradient field differences

$$\Delta_{horiz}(\nabla\Phi) = \sum_{m=1,2} \sum_{n=2,3} \left| \frac{\partial \Phi_m}{\partial x} - \frac{\partial \Phi_n}{\partial x} \right| \Delta_{vert}(\nabla\Phi) = \sum_{m=1,2} \sum_{n=2,3} \left| \frac{\partial \Phi_m}{\partial x} \right|$$
$$\Delta(\nabla\Phi) = \sqrt{\left(\Delta - (\nabla\Phi)\right)^2 + \left(\Delta - (\nabla\Phi)\right)^2}$$

horiz

- Each gradient
 component of each SAR
 image is differenced
 separately to preserve
 directionality
- Landfast ice exhibits a low gradient difference magnitude

vert

 ∂

Gradient difference mosaic - midwinter

Mosaic all the gradient difference sub-region images together

threshold at 0.08 dB m⁻¹

22 Dec 2001 - 8 Jan 2002

Threshold values typically between ~0.05 and 0.1 dB m⁻¹
SLIE is clearly visible but disconntinuous

Gradient difference mosaic - spring

8 May 2002 - 25 May 2002

Surface melt and flooding introduce difficulties
No unique threshholding value for all regions of all images
Automated delineation technique remains elusive

Delineation of the SLIE

SLIEs are manually delineated from

- 3 consecutive mosaics
- the corresponding gradient difference mosaic

May 8-10 2002

May 14-16 2002

Results

Stacked SLIE delineations

222 SLIEs from 1996-2004 stacked on top of each other probability = fraction of SLIEs occuring at same location zones of preferred location indicated by orange-green colors discrete nodes of higher probability within this zone

Interannual variability

Comparison with bathymetry

Measuring Landfast Ice Width

Landfast ice width is measured along profiles ~normal to the coast

- ~ 2000 transects performed
- 200 average landfast ice widths calculated
- non-linear co-ordinate axis

Landfast Ice Development

Overall development appears asymmetric

- slow advance in winter
- rapid break-up in spring

Peak extent does not coincide everywhere in study area Temporary extensions can be seen

landfast ice advances then retreats to previous position

Freezing / thawing degree days

Landfast ice width and freezing / thawing degree days at the Colville Delta

Retreat of landfast ice preceded by onset of thaw
accumulated thawing degree days at break-up appears constant
Little correlation with freezing degree days

Conclusions

Colocated SAR works!

• automated technique remains elusive

SLIEs have a preferred location zone

- landfast probability correlates with water depth
- discrete nodes suggest SLIE is discontinuously grounded

Timeseries of landfast ice captures episodic events
high spatial and temporal resolution
allows detailed comparison with climate data