20SGS
 InSAR imaging of Aleutian Volcanoes
 Zhong Lu
 > SAIC, USGS/EROS > Sioux Falls, SD 57198 > lu@usgs.gov

 SAIC, USGS/EROS

 SAIC, USGS/EROS

 Sioux Falls, SD 57198

 Sioux Falls, SD 57198

 lu@usgs.gov

 lu@usgs.gov
 http://edc.usgs.gov/Geo_Apps
 Acknowledgements:
 - Contributions by many colleagues.
 Funding from NASA, USGS LRS Program, USGS Director Venture Capital Funds, USGS Volcano Hazards Program, USGS Earthquake Hazards Program, and NSF.
 - SAR imagery from ASF, ESA, and JAXA.
 Cosa ISE] सKA 途

RUSGS

Radar is an instrument for measuring distance

- In its simplest form, a radar operates by broadcasting a pulse of electromagnetic energy into space - if that pulse encounters an object then some of that energy is redirected back to the radar antenna.
- Precise timing of the echo delays allows determination of the distance, or "range", while measuring the Doppler frequency tells the velocity of the target.

Outline

- Introduction to InSAR
- Issues on InSAR processing
- InSAR imaging of Aleutian volcanoes
- Okmok
- Seguam
- A few thoughts

20SGS

Synthetic aperture radar is an active microwave sensor

- The electromagnetic wave is transmitted from the satellite. The wave propagates through the atmosphere, interacts with the Earth surface. Part of the energy is returned back and recorded by the satellite.
- By sophisticated image processing technique, both the intensity and phase of the reflected (or backscattered) signal can be calculated. So, essentially, a complex-valued SAR image represents the reflectivity of the ground surface.
- The amplitude or intensity of the SAR image is primarily controlled by terrain slope, surface roughness, and dielectric constants, while the phase of the SAR image is primarily controlled by the distance from satellite antenna to ground targets and partially controlled by the atmospheric delays as well as the interaction of microwave with ground surface.

RUSGS
 How InSAR Works

- Interferometric synthetic aperture radar
(InSAR) combines phase information fro
(InSAR) combines phase information from two
or more radar images of the same area
acquired from similar vantage points at
different times to produce an interferogram.
The interferogram, depicting range changes
between the radar and the ground, can be
further processed with a digital elevation mode (DEM) to image ground deformation at a horizontal resolution of tens of meters over areas of $\sim 100 \mathrm{~km} \times 100 \mathrm{~km}$ with centimeter to sub-centimeter precision under favorable conditions.

RUSGS
Step 5 - Flattened interferogram: $\Delta \phi_{\text {init }}-\Delta \phi_{\text {flat }}$

ZUSGS Step 4 - Phase difference caused by difference of satellite positions over a flat earth: $\Delta \phi_{\text {flat }}$

©

RUSGS

RUSGS
Step 9 - Deformation interferogram in map projection

OUSGS
Step 8 - Deformation interferogram with noise reduction: $\Delta \phi_{\text {def }}=\Delta \phi_{\text {init }}-\Delta \phi_{\text {flat }}-\Delta \phi_{\text {topo }}$

DUSGS
Step 9 - Deformation interferogram in map projection

OUSGS Representation of Interferometric Data

RUSGS
Synthetic Aperture Radar Satellites

- Current and Past Sensors
- European ERS-1, 1991-2000, C-band, 35-day repeat cycle
- European ERS-2, 1995-now, C-band, 35-day repeat cycle (experiencing malfunctions since early 2001)
- Japanese JERS-1, 1992-1998, L-band, 44-day repeat cycle
- Canadian Radarsat-1, 1995-now, C-band, 24-day repeat cycle
- European Envisat, 2002-now, C-band, 35-day repeat cycle
- Future Sensors
- Japanese ALOS, 2006, L-band, 46-day repeat cycle
- Canadian Radarsat-2, 2006(?), C-band
- German TerraSAR-X, 2006(?), X-band
- U.S. DOD Space-based Radar Constellations
- U.S. ECHO+, forever?
- Chinese SAR Constellation (5 satellites), next decade
- ... Wavelength (λ)
- X-band: $\lambda=\sim 3 \mathrm{~cm}$
- C-band: $\lambda=\sim 5.7 \mathrm{~cm}$
- L-band: $\lambda=\sim 24 \mathrm{~cm}$

ZUSGS Interferometric Synthetic Aperture Radar (InSAR)

- Errors in InSAR observations
- Temporal decorrelation of ground surface due to dense vegetation and other environmental changes - Wavelength dependence.
- Atmospheric delay anomalies
- Artifacts due to uncertainties in determining satellite positions

- Observations from independent images
- Interferometric permanent scattering technique - Longer wavelength radar
- Shorter visit cycle

Subsidence was up to 8 cm/year

RUSGS

Precise mapping of surface deformation is a critical element in the assessment and mitigation of hazardous events.

- Mapping surface subsidence and uplift related to extraction and injection of fluids in groundwater aquifers and petroleum reservoirs provides fundamental data on
reservoir/aquifer properties and processes and improves our ability to assess and
mitigate undesired consequences.
- Monitoring dynamic water-level changes beneath wetlands can improve hydrological
modeling predictions and enhance the assessment of future flood events over wetlands.
- Measuring spatial and temporal patterns of surface deformation in seismically active regions are extraordinarily useful for estimating seismic risks and improving
earthquake predictions
- Measuring and documenting how landslides develop and are activated are prerequisites to minimize the hazards they pose in areas of rapid urban growth
- Measuring how a volcano's surface deforms before, during and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards.
®evses Aleutian Arc Volcanoes

حUSGS Estimating Lava Flow Volume of 1997 Eruption

1. The pre-eruption DEM is produced using repeat-pass ERS InSAR data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation.
2. Post-eruption DEM is generated from airborne (TOPSAR) InSAR images where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches.

ZUSGS Lava thickness derived from the difference of preeruption and post-eruption DEMs

Transient deformation of Okmok volcano, Alaska

ERS-1:	$1992-1996$
ERS-2:	$1995-2003$
Radarsat-1:	$2000-2003$
JERS-1:	$1992-1998$

ZUSGS

Deformation model \rightarrow InSAR images: point expansion source

$R=\sqrt{\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(-z^{\prime}\right)^{2}\right]}$

20SGS

Deformation of lava flows erupted before 1997

2USGS
Deformation of 1997 lava flows from JERS-1 Imagery

Surface displacement due to lava contraction and consolidation can be $2 \mathrm{~mm} /$ day or more four months after the emplacement

® \quad USGS

Transient volcano deformation sources imaged with InSAR Application to Seguam island

Seguam Volcano, Alaska

- Erupted in 1927 and 1977
- Last eruption: Dec. 27, 1992

May 28, 1993
Jul. 31 - Aug. 19, 1993

RUSGS

InSAR Images of Seguam Volcano

InSAR images of Seguam Volcano: 30 images document deformation during a variety of time intervals between 1992-2000.

0
range change, cm \uparrow

RUSGS

Deformation model

magma intrusion

RUSGS
Complex deformation
point expansion source array

RUSGS

Deformation model \rightarrow InSAR images:
point expansion source

RUSGS

Matrix assembly:
point expansion source array

matrix expression

$$
d_{j}=s_{i} G_{i j}
$$

system of linear equations
$d_{1}=s_{1} G_{11}+\ldots s_{n} G_{n 1}$
$d_{2}=s_{1} G_{12}+\ldots s_{n} G_{n 2}$

RUSGS
 Dominant source clusters

RUSGS

Source cluster time series

three clusters dominate, each having a distinctive time-dependent behavior

Transient deformation
1993 | | | | | | | | | 2001 all clusters combined

RUSGS
Persistent Scatterer InSAR (PSInSAR)
Differential Phase Equation
For pixel n in interferogram i (corrected for topography)

$$
\phi_{n, \mathrm{i}}=\phi_{\varepsilon, \mathrm{n}, \mathrm{i}}+\phi_{\text {defto,n,i}}+\phi_{\text {APS, n, } \mathrm{i}}+\phi_{\text {orbiti,n,i}}+\sigma_{n, \mathrm{i}}
$$

[^0]

RUSGS

Thank you for your attention!

[^0]: R्లUSGS

 - New SAR technologies
 - Polarimetric InSAR - biomass mapping
 - Permanent Scatters InSAR - measuring deformation at millimeter accuracy
 - ScanSAR InSAR - improve spatial and temporal coverage

 ## - Applications

 - InSAR monitoring of volcano, earthquake, and landslide processes
 - Landslide movement with artificial, active radar reflectors
 - Sensor fusion: different wavelength/polarization SAR data, LIDAR, optical images
 - Sensor fusion: different wavelength/polarization SAR data, LIDA
 - Detecting deformation beneath vegetation with polarimetric InSAR
 - Mapping soil moisture at a spatial resolution not achievable from optical imagery - An automated InSAR processing system

