

Glaciers and Ice Sheets 'Grand Challenges'

- Understand the polar ice sheets sufficiently to predict their response to global climate change and their contribution global sea level rise

-What is the mass balance of the polar ice sheets?
-How will the mass balance change in the future?

Retreat of Antarctic Ice Sheet and Sea Level Rise

\square

Mass Balance

- Ice sheet mass balance is described by the mass continuity equation

Evaluations of the left and right hand sides of the equation will yield a far more complete result

The RAMP Contribution

- Surface geometry
- Surface motion
- Surface accumulation rate

$\begin{aligned} & \text { Basal Drag, } \\ & \text { Inferred at best }\end{aligned} \tau_{d x}=\tau_{b x}-\frac{\partial}{\partial x} \int_{b}^{h} R_{x x} d z-\frac{\partial}{\partial y} \int_{b}^{h} R_{x y} d z \equiv \tau_{b x}+\tau_{l x}+\tau_{s x}$
Terms related to gradients in ice velocity (InSAR) integrated over thickness

Coastline derived from 1963 DISP Imagery

Decorrelation Stripes with the
Prevailing Windfield Vector

Prevailing wind direction vs. mapped decorrelation stripes

The Next Challenge:

Glaciers and Ice Sheets Mapping Orbiter

- Key Measurements:
- Determine total global volume of ice in glaciers and ice sheets
- Map the basal topography of Antarctica and Greenland
- Determine basal boundary conditions from radar reflectivity
- Map internal structures (bottom crevasses, buried moraine bands, brine infiltration layers)

Interferometric Sounding Concept

-Conventional interferometry uses phase information one pixel at a time

- Additional information contained in the spatial frequency of the phase:

Because of the difference in incidence angles, the near madir interform from the return is much larger than the equivalent frequency for surface clutter
Opposite side ambiguities have opposite interferometric frequencies: while the phase in one side increases with range it decreases with range in the opposite side ($+/$-spatial frequencies of complex interferogram)
-IFSAR sounding concept: spatially filter interferogram to retain only basal returns from one side

nd, x is the cross-rack coordinate of the surface poin whose
woway travel time is the same as the two-way travel time for x.

A New Technical Approach Required

- Nadir sounding 'profiler' cannot meet science requirements:
- Beam limited cross-track spatial resolution (1 km) requires antenna size beyond current capabilities (420 m at P-band)
Full spatial coverage requires
years of mission lifetime (high costs)

- Conventional Interferometry is Insufficient
- Coverage, spatial resolution, and height accuracy suggest a swath SAR interferometer might meet concept
- Ambiguous returns from and the make this approach not feasible

Observed SAR Backscatter and Imaging of Ice Sheet Base

Mission Concept

- P-band (430 MHz), 6 MHz bandwidth
- attenuation is essentially same at from 100 MHz to 500 MHz
- along-track resolution from SAR processing
- cross-track resolution from pulse bandwidth
- Two antennas, 45 m baseline, off-nadir boresight - 1.5 degrees
mesh dishes, SRTM-like boom, 50 km swath from 10 to 60 km cross-track
use conventional nadir sounding for layering studies
- Fully polarimetric for ionospheric effects
- 600 km altitude, 1 year minimum mission lifetime

The Next Step

Captain Ashley McKinley holding the first aerial surveying camera used in Antarctica. It was mounted
in the aircraft 'Floyd Bennett' during Byrd's historic flight to the pole in 1929. (Photo from The Ohio State University Archives)

IPY '07 is an important next step that can:

- establish an essential benchmark for guaging changes in polar systems.
- further our understanding of how polar processes are intertwined with those of the rest of the globe.
- SAR and InSAR will be necessary elements of the IPY GIISPY data stream.

Instrument Concept

Key Parameters

Polarimetric
Center frequency
Bandwidth
Pulse length
Peak transmit power
System losses
System iosses
Platform height
Platform height
Azimuth resolution
PRF
Duty cycle
Antenna length
Antenna efficiency
Antenna boresight angle
Wavelength
Baseline
Swath
Swath
Minimum number of looks

4 channels
430 MHz
6 MHz
$20 \mu \mathrm{~s}$
$20 \mu \mathrm{~S}$
5 kW
-3 dB
-3 dB
4 dB
4 dB
600 km
600 km
7 m
10 kHz
20 \%
12.5 m
-2. dB 1-wa
2. dB 1-
1.5 deg
0.7 m

45 m
50 km
500

