

SAR geometry and backscatter

Jeremy Nicoll

Outline

- Satellite geometry
- Ground range and slant range
- Geometric distortions
- Radar Cross Section
- Speckle

What do we measure?

- At the satellite
 - Radar signal strength as a function of time
- After processing
 - Radar Cross Section per piece of dirt

Satellite geometry

- Azimuth
- Range
 - Slant range
 - Ground range

Ground range and slant range

Geometric distortions

View animation

Distortions

Foreshortening

JERS-1

ERS-1

Distortions

Distortions • Shadow

A. ERS-1 image acquired with a 67° depression angle. http://www-rohan.sdsu.edu/~boisver/insar/rad5.html

B. JERS-1 image acquired with a 55° depression angle.

(Corner Reflector)

Reflection off a smooth surface The angle of incidence, i, equals the angle of reflection.

The variation in surface height is on Scattering off a rough surface

the order of the incoming signal's

wavelength.

Scattering Mechanisms

Double Bounce

grass and a freshly-cut tree's stump reflecting off two smooth surfaces, One possible natural occurence -

Example scattering in a tree **Volumetric Scattering**

What does

"See"?

Radar Cross Section

- Compare all targets to a sphere
 - Must be a "perfect sphere"
 - Cross-section is same in all directions
 - "What size sphere would give me this return?"

Speckle

- Same wavelength
- Same time

